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ABSTRACT 

The Rogue  receivers are a series of custom  high-accuracy  Global  Positioning  System  receivers 
being  developed at NASA’s Jet Propulsion  Laboratory.  This thesis describes two additions to the 
RogueOS, a  custom  operation  system  developed  for these receivers.  The first addition is an 
implementation of interprocess  communication.  This  provides separate processes running on the 
receiver the power to pass arbitrary data structures easily and quickly to each other. The  second 
addition is a  flexible  control  system that allows  various  functional units to be linked together in a 
highly  adaptive way. The intent of the control  system is to make  robust  real-time,  embedded, and 
intelligent  seeming  applications  easy to develop.  This  control  system is the first step  in making 
the Rogue  receivers  autonomous entities capable of carrying out complex  missions in low earth 
orbit  satellites  without the need for human  intervention. 
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Chapter 1 Introduction 

This thesis is made up of three parts that describe two additions to the operating  system 
for the Rogue  family of  Global Positioning  System  (GPS)  receivers.  The first part provides the 
background  and  context  for both of these additions. It provides an overview of the GPS, the 
receivers, and the operating  system.  The  next part describes the design and implementation of a 
communications  library  for the receivers.  The  last part describes the design and implementation 
of a  control  system for the operating  system that is to serve as a substrate which programmers  can 
use to easily  implement  robust  reactive  systems. 

1.1 The Global Positioning System 

GPS  was originally a military  technology.  Near the end of the cold  war the targeting 
systems on intercontinental ballistic  missiles  became so accurate that they  could target enemfs 
missile  silos  reliably.  The  ability to destroy  your  opponent’s  missiles had a  great effect  on the 
balance of power. In order to attain such  accuracy  you  had to know the missile’s  precise  launch 
location. When  you launch the missiles  from land, as the Soviet Union  did, this is an  easy 
problem,  but the bulk of the U.S. nuclear  arsenal  was at sea on submarines. In order to match the 
Soviet accuracy the U.S. had to come up with  a  way to allow these submarines to surface and 
quickly fix their exact  position  anywhere in the world.  This is the problem that GPS  solved 
[Trimble,  19961. 

GPS consists of three segments:  a  space  segment, a control  segment,  and a user  segment. 
The  space  segment  consists of a constellation of 24  satellites  orbiting the earth at 10,goo  nautical 
miles. The  constellation is designed  such that between  five and eight  satellites are visible  at  any 

- time from any  point on the earth [Dana, 19941.  These satellites  broadcast  signals to  the earth 
a ph @‘?f?- c o n t c e n d  timing data. Using the signals  from  four  satellites a receiver  can  use 

resection to calculate  both its position in three coordinates to sub-meter accuracy and universal 
time to atomic  accuracy. 

The  control  segment, or ground  segment  consists of five  monitoring stations that monitor 
the health of all the GPS satellites.  These stations are  located in Hawaii,  Ascension  Island, Diego 
Garcia,  Kwajalein, and Colorado  Springs.  These stations collect  exact  position  data  for  each 
satellite and relay the information to the master  control station in Colorado  Springs.  The  master 
station translates this information into corrections, which it then sends to  the satellites to be 
incorporated into the data sent to  the user  segment. 
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Error  Source  Differential GPS Standard GPS 
Satellite Clocks 

0.2 0.5 Troposphere 

0.4 5.0 Ionosphere 

0 2.5 Orbit Errors 

0 1.5 

Receiver Noise 0.3 0.3 

Multipath 0.6 0.6 

Standard 
GPS  GPS 

Differential 

Horizontal 
2.0 78 Vertical 
1.3 50 

3-D 2.8 93 

Figure 1.2 - Typical GPS  Position 
Accuracy [nimble, 19961 

I SA I 30 l o  I 

Figure 1.1 - Typical GPS Error in Meters 
(per  satellite) [nimble, 19961 

The  user  segments  consists of all GPS  receivers.  These  receivers  locate  GPS satellite 
signals,  decode the signals, then use the information in the signals to calculate latitude, longitude, 
altitude, and universal  time.  The  basic  calculations  result in positions  accurate to within 100 

meters,  while  more  advanced  calculation  can  yield  sub-meter  accuracy  (Figure 1.1 and Figure 1.2). 

4 W t  & f i Y C . 4  bfi*m 
1.2 The Rogue Receivers 

The Rogue  Family  of  GPS receivers is a set of extremely  configurable  high  accuracy GPS 
receivers intended to satisfy NASA’s  GPS needs.  The  purpose of these receivers is to act as 
scientific instruments, returning atomic  clock  accuracy time and accurate  ephemeris  (positional 
data). Recently  many  low earth orbit missions  have  been  proposed that would  use  such 
information to recover  information  about the Earth.  The GPS  On A Chip (GOAC) series of  Rogue 
receivers  answers the needs of these missions  [Franklin, 19981. 

The  basic GOAC receivers  use the PowerPC 603e microprocessor  and run at  over 150 

MHz. The  hardware  allows  for  multiple  configurations and even  expansion in the GPS itself. 
Custom  ASICs (application  specific  integrated 
circuits) handle the signal  processing  aspects 
of computer GPS solutions,  leaving the CPU 
free to handle higher  level  functionality.  The 
GOAC receivers  allow  for up to four  AsICs, 
each  with the ability to track  multiple 
satellites at once. All this allows for a  great 
amount of flexibility in the potential  uses of 
the receiver.  All this potential  requires  a 
flexible,  powerful, and easy to use  software 
base. A custom  operating  system  fills this 
need. 

Figure 1.3 - A Rogue GPS Receiver 
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1.3 The Rogue Operating System (RogueOS) 

The RogueOS is a  custom  operating  system  developed  for the GOAC GPS receivers by the 
Rogue group at NASA's Jet Propulsion  Laboratory  (JPL).  The  operating  system runs Apple PEF 
(PowerPC  Executable  Formats) in a  preemptive  multitasking  environment.  The  system  gives  user 
code  capabilities  such as memory  management,  multi-threading, and interrupt handling.  Extra 
functionality  can be made  available  via  libraries that can  be  dynamically  linked at runtime [Dunn, 
19971. The  results of this thesis are two runtime libraries for the operating  system.  The 
communication  library  provides separate processes the ability to pass arbitrary data structures 
between  any  number of threads. The  second  library  provides the functionality of the control 
system  described in the third part of this thesis.  This  section will  explain the workings of the two 
parts of the operating  system  relevant to the libraries:  memory  protection  and  multitasking. 

Memory protection in the RogueOS takes the form of virtual  memory.  The  virtual 
memory  system has various  mappings  from  virtual  memory  spaces into physical  memory,  each 
virtual  memory  space is referred to as a memory context. Several threads of execution  may share 
a memory  context, or they can  execute in separate contexts.  Threads  from  one  memory  context 
cannot  directly  manipulate the memory in another. A group of threads executing in the same 
memory  context are referred to as a process. Figure  1.4 illustrates this situation. Communication 
between  processes is made  possible  by  using  a shared memory  interface;  addresses in a particular 
range will be mapped to the same  physical  memory  addresses  regardless of the memory  context of 
the executing thread [Dunn,  19981. 

I I  Channel 2 

3 m 

E 
Figure  1.4 - Memory protection  in RogueOS 

[Dun%  19981 
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RogueOS  allows for  multiple threads to be run simultaneously in a preemptive 
multitasking  environment. A thread manager is responsible  for task switching, task 
prioritization, interrupt dispatching, and handling  timed  events. A context  switch  occurs  for the 
following  reasons: 

A thread voluntarily  gives up the processor 

A higher  priority thread wakes up 

0 A higher  priority thread is started 
The  time  slice for  the currently  executing thread runs out (a  decrementer task switch 

interrupt is received 

The  next thread to run upon  a  context  switch is determined in a round robin  manner. By 
default,  four tasks from one priority level  execute  before  a task from the next  lower  level  executes 
once  (Figure 1.5). There are five  priority  levels,  from  lowest  priority to highest  they  are: 
Background,  Low,  Normal,  Urgent, and Emergency.  Tasks  at the Emergency  priority  level  never 
yield to tasks at lower  priority  level . S 

The  operating  system has many other features less  relevant to  this thesis, such as ethernet 
support, RS-422 support, and  power  management.  Some support features, such as mutexes and 
locking,  will be  described as they come  up. 

Emergency 
Urgent 
Normal P l p 2 p 3 p 4   N 5 p l P 2 ( N 3  ~ t . . ~ ~ ~ . . ~ w ~ . . ~  
Low 
BackGround PI 

L1 L2 - - 
Figure 1.5 - Task scheduling in the RogueOS [Dunn, 19981 
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Chapter 2. The Communications Library 

This chapter will  describe the design and implementation of the communications  system 
in RogueOS. The first section  describes the original  communications  implementation  in the 
operating  system,  by  Charlie  Dunn.  The  second  section  describes the replacement  for this 
implementation and its capabilities. 

2.1 The Original Implementation 

The  original  implementation of the communications  library set up a datastream model. 
The inspiration for this model  comes  from C++ streams. Once a datastream has  been set up, 
passing  objects  between two threads is as easy as calling the input and output operators (>> and 
< <  respectively).  This  implementation  defined the interface  for the next  version. 

Figure 2.1 - Original RogueOS communications  [Dunn, 19971 
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Figure 2.1 shows a high  level  view  of this implementation.  It is a “file”  paradigm - one 
writer,  multiple  readers.  There is one output stream (dostream) with an associated data buffer. 
This data buffer  exists in the same  memory  context as the dostream. Input streams (distreams) 
attach to the dostream,  copying data from it upon a read.  The data is transferred from  one 
thread to another by events, which  copy data  from the output memory  context to shared memory 
context and then from there into the input memory  context.  When  all  registered readers read 
past  a data element,  it is deleted  from the data buffer.  Data is passed  by  value, so a specific thread 
can pass so only one type of data  (though  polymorphism  can be achieved  by  passing pointers into 
shared memory).  Threads that use dostreams must  descend  from  a pktsource<DataBase> class 
where  DataBase is a base  class to all the data types to be transferred. Similarly, threads that use 
distreams must  descend  from pktsink<DataBase>. The data types being transferred must define 
a “Base”  type, the same  type as the DataBase  template argument, passed to pktsource and 
pktsink. 

This  implementation  had a few  drawbacks that needed to be corrected for upcoming 
missions.  First of all,  a  more  general  multi-writer  multi-reader  implementation  was  needed. 
Also, due to the data rates the streams needed to handle, a faster implementation  was  needed. 
And  finally, this implementation  had  problems  working  across  memory  contexts.  The  event 
classes  would  be instantiated with  one of the streams, living in either the memory  context of the 
output thread or the memory  context of the input thread. This  meant that  the events  could copy 
objects into shared memory,  but  would  have  no  way of communicating  where those objects were 
across other memory  contexts.  The  new  communications  library  addresses these problems. 

2.2 The New  Implementation 

The two main  ideas  behind the re-implementation of the communications  library are 
simplicity and moving the data  buffer  itself into shared memory.  Simplicity is in the design and 
the interface.  Figure 2.2 shows an overview  of the design. In this implementation streams have 
direct  connections to  the buffer in shared memory. 

When a stream is created, it is given an identifying string. This string links the stream 
with a data  buffer in shared memory.  All streams created later that are given the same  name and 
pass the same  type of data are linked to  the same  data  buffer.  Output streams simply  place data 
into this buffer, and input streams simply  read  it.  There are various ways that input streams can 
behave  when they read  beyond the end of the buffer.  Four  modifiers  control this behavior; 
eof-on,  eof-off,  block, and nonblocking. If a stream is specified  block, then the stream will put 
the thread to sleep  when it reads beyond the end of the buffer. If a stream is specified as 
nonblocking then an  exception  will  be  thrown  when you read  beyond the end of the buffer. If a 
stream is specified  eof-on, then the stream will throw an end of file  exception  when  a  reader 



Memory Context 1 

dostream 

Memory Context 2 

dostream 

Thread 3 

dostream 

Shared Memory 

Data Buffer 

Memory Context 3 

distream 

Memory Context 4 

Figure 2.2 - The redesigned communications library 

reads  beyond the end of the buffer and there are no writers  registered. If eof-off is specified, then 
the stream will just put the thread to sleep,  waiting for another writer to connect and send more 
data. 

This  implementation gets around the problems  with the previous  one.  First of all there 
are no  special  requirements of threads that use streams; they do  not  have to be  descended from 
any  base  class.  The  only  requirement  made of the data  class is that it has a copy constructor, to 
allow the data to be moved  between  memory  contexts. As the data  buffer is now separate from 
the writer and the reader, it is easy to have  multiple  readers and writers.  The  simple 
implementation  means that there is a nice  performance  increase.  The  bulk of the time is spent 
either copying the data or adjusting the size of the data buffer  (depending on how  complicated the 
data is).  In order to make this work  across  memory  contexts one addition  needs to be  made. 

As it stands, this implementation  falls  prey to  the same  fault that the previous 
implementation  succumbed  to, there is no way to set us the communication  across the shared 
memory  context.  The way around this is to compile the library as a system  library, so that the 
code and all  variables  live in shared memory. A pointer  for  each  data  buffer for each data type is 
instantiated upon the loading of the library. All threads that include the headers  for the library 
are told  where the buffer is, thus solving the problem. 

This  library has been distributed to the members of the Rogue group  and  has  been  put to 
use in the latest  mission  software. It has  proven to work  well for all  but the most time intensive of 



the communications chores. Appendix A lists the source  code for the communications  library. 
Appendix B lists the source  code for a demonstration of how to use the library.  Appendix C is the 
documentation  on the difference  between the two versions. 



Chapter 3. Background for the Control System 

This chapter begins the meat of this thesis: the development and description of the 
control  system  architecture  for the Rogue  receivers  (nicknamed the Cloud).  The task at hand was 
to develop a substrate for the rogue  programmers to program on top of that offered 
responsiveness,  robustness, and ease of use.  This substrate would tie together the work  of the 
various  programmers and allow the receiver to act in an autonomous  fashion.  There are two close 
analogies to this problem, the development of autonomous  spacecraft  and the development of 
autonomous  robots.  This chapter discusses  work  done  on both of these tasks and draws forth 
from them capabilities the Cloud should  have. It also  describes  some  ideas  from  Artificial 
Intelligence that have inspired aspects of the system. 

3.1 Autonomous Spacecraft 

NASA has recently instituted a New Millennium  Program  (NMP)  whose  mission is to 
achieve a “virtual  presence” in space by  deploying  spacecraft  built  according to  the new NASA 
“faster, better, cheaper”  motto.  Spacecraft  with  some  degree of autonomy are needed to fulfill this 
goal.  Autonomous  spacecraft  will  reduce  missions  operation  cost  by  taking  over  many of the tasks 
usually  performed by ground stations. They  will  also  improve  mission  quality  by  being  more 
reactive to their environment and more  failure tolerant than traditional spacecraft.  The first NMP 
missions, the Deep  Space  program, are designed to showcase  new  technology  being  developed at 
NASA. The first Deep  Space  mission,  Deep  Space  One  (DSi)  launched in October  1998.  One of 
the technologies the DSi  mission  was to demonstrate  was the New Millennium  Remote  Agent 
(NMRA), the first Artificial  Intelligence  system to control an actual  spacecraft  [Pell, 19961.  Due to 
delays, the spacecraft  was  launched  without the NMRA, so the software  remains  untested. 

The NMRA is at heart a real-time  planning  engine. A long-term  plan  covering the entire 
mission (mission profiZe) is stored in a part of the system  called the Mission Manager (MM). 

Another part of the system, the Executive  (EXEC), requests  plans  from the MM. When this 
happens the MM selects a set of goals  from the mission  profile and presents it  to the 
Planner/Scheduler (PS). The PS turns these  goals into a  plan that the EXEC can run. When the 
plan is almost  all  carried out the EXEC sends another request to the MM for another plan 
[Muscettola, 19971. Figure 3.1 shows an overview of the NMRA architecture. 
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( Remote Agent 

Mode ID 

Reconfig 

Monitors 

Figure  3.1 - The NMRA Architecture [ Smith, 19971 

Plans in the NMRA consist of several  parallel  timelines  each  consisting of a  sequence of 
tokens that describe the state of the spacecraft.  Tokens  have  a start time, a stop time, and a 
duration. Tokens  can  also  have  one or more  arguments.  Constraints determine how different 
tokens can  be  arranged. 

'G 

NMRA suffers  from the same limitations that most  planning  systems  suffer  from. 
Interactions between  different tokens must  be  explicitly  modeled for the system to know the 
effects one action has on another. When  a  complicated  system is being  developed, the number of 
these interactions grows  exponentially,  making  explicit  modeling  difficult.  Plans are neither 
robust nor reactive.  Unexpected  changes  in the environment  can throw plans completely off and 
the spacecraft  cannot  react to  the situation until a new plan has been  formulated.  These  problems 
are in the areas where the Rogue control  system  needs  performance,  indicating a preference away 
from  planning  systems. 

3.2 Robotic Control Systems 

From  one  point of  view, the Rogue  receiver is much  like a robot. It is able to sense the 
state of the world and act  upon it. Its sensors are antennas and its actuators are communication 
ports. Using this analogy,  work  done in autonomous  robotics  can be used to control the receiver. 
Unfortunately,  robotics has not  been  able to produce  a  robot  capable of accomplishing  complex 
tasks reliably  in  a  complex  environment.  The  vast  majority of robots in the world operate in a 
simplified  world,  where  unexpected things do not  happen. Assembly line robots are not  able to 



cope  with parts arriving in random orientations, mail  delivery  robots  cannot  reorient  reliably if 
bumped. 

To contrast with these types of robots, Rodney  Brooks  defines  a Creature as “a completely 
autonomous  mobile  agent that co-exists  in the world  with  humans, and is seen by those humans 
as an  intelligent  being in its own right”  [Brooks, 19911. A control  system for such  a creature 
bridges the chasm  between  sensor input and actuator output, allowing the creature to react 
intelligently to its environment.  The goal for the Rogue  receivers is to appear as creatures, 
intelligent,  reactive, and robust.  The rest of this thesis presents an architecture  for  such a control 
system,  nicknamed the Cloud,  more  technically  called  Data-Action-Goal  Networks (DAG 
Networks). 

The rest of this chapter is an overview  of robotic  control  systems.  The  next part describes 
what  capabilities we should  expect these systems to have.  After that  is a  brief  discussion of the 
history of these systems and an evaluation of what  approaches  achieve  which  capabilities.  The 
final part of this chapter discusses  characteristics DAG Nets  should  have,  drawing  inspiration 
from  powerful  ideas in modern  Artificial  Intelligence. 

3.3 What creatures  should be able to  do 

To deserve the title, a creature should 
display  a  certain  level of functionality.  The 
definition of creature given  above points the 
way to  this baseline  functionality.  First,  a 
creature should  be  autonomous. An 
autonomous creature is one that can interact 
with its environment for extended  periods of 
time without  intervention. Just how  long an 
‘extended  period’  justifies the term 
autonomous is dependent on the task at  hand. 
In the MIT Autonomous  Robot  Design 

Figure 3.2 - Genghis, one of the first 
creatures 

Contest, the robots  function  independently  for 60 seconds and earn this title. If the domain is 
space  exploration, this period may  be  much  longer. An autonomous creature must  be  able to 
make  decisions  on its own, correct  for  unexpected  circumstances, and be  self-aware  enough to 
know  when a subsystem is not  working  perhaps  even  be  able to fix it. 

The  definition  goes  on to claim that a creature must  ‘co-exist’ in the world  with  humans. 
Existing in this manner has  two  implications  for  creatures. A creature must  be  embedded. An 
embedded creature does  not  deal  with the world  through  simulation or abstraction;  it  deals  with 
the world  by  interacting  with it. A creature must  also  deal  with the world in real  time. A robot 
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driver that takes half  an hour to figure out it is going to crash into oncoming  traffic  unless it turns 
to  the left is an example of a  system that fails this real time requirement. 

The last part of the definition  dictates that a creature must appear intelligent. Again, 
what constitutes ‘intelligent’ depends on the creature’s  purpose. By limiting the activities 
expected of the creature, satisfylng this constraint becomes  easier,  Defining a baseline of 
intelligence  requires constraints that apply  regardless of the purpose of the creature.  One  aspect 
of intelligence we want  from these creatures is that they  respond  appropriately to changes in  the 
environment.  The  reaction  need  not be optimal, but it should  be fitting and timely. A creature 
should be able to pursue multiple  goals at once and when circumstances  dictate, a creature should 
modify the goals it pursues,  adapting to its surroundings. A creature should  also  be  robust. 
Minor  changes  should  not  cause a catastrophic  failure; rather one should  expect that performance 
degrades  gradually and gracefully as problems  arise.  Finally,  a creature should  accomplish 
something  useful. 

This  definition of a creature is precisely  what is wanted  from the Cloud, or from  any 
autonomous  spacecraft.  In this way  we could  populate outer space  with  many  such creatures, let 
them  roam  without  intervention, and simply  collect the data they send back.  We just need  a 
design that accomplishes  all these characteristics. 

3.4 How creatures  have worked 

Two approaches to control  systems  for creatures have  developed  over the last 40 years, 
symbolic and behavioral. I present  both these approaches and evaluate  how  well they meet the 
criteria presented above.  Symbolic  systems are the 
classic  solution to problems in robotics,  allowing  fairly 
complex  behavior in extremely  simple  environments. 
Behavioral  systems are a  newer  solution to the problem, 
allowing  robots to function in unconstrained 
environments  but  unable to accomplish  complex tasks. 

3.4.1 Symbolic Systems 

The  symbolic  approach separates abstraction 
from  reasoning  from  action. A robot that follows the 
symbolic  paradigm abstracts sensor values into a 
representation of the world, reasons based on this 
representation, and takes action  based on this reasoning. 
This  approach is reminiscent of the PlanningjScheduling Figure 3.3 - Shaky 



approach taken by the NMRA. This  leads to a  clear separation between the sensor  systems, the 
motor  systems, and the reasoning  engine. 

The  symbolic  approach  was the original  solution in Artificial  Intelligence to an  embedded 
control  system.  Shakey,  shown in Figure 3.3, was one of the first symbolic  robots,  built in  the late 
sixties and early  seventies  [Nilsson, 19841. Shakey  lived in an  extremely  simplified  world,  where 
the only  objects  were painted polyhedral  objects.  In this environment  Shakey  was  able to form 
and execute  complex  plans.  She  was  considered to be  a  great  success,  demonstrating  a  system 
that successfully integrated many of the AI techniques of the day. As successful as Shakey  was, 
robotics has progressed little since her days.  To this day no robot has been  created that can 
match Shakefs performance in a  real world setting. 

Shakey is typical of symbolic  robots.  These  systems are capable of fairly  complex 
behavior in very simple  environments. When confronted  with a complex  environment the 
symbolic  descriptions tend to break down and reasoning  becomes  unwieldy.  Symbols are unable 
to capture the full  complexity of the real  world  and  unforeseen  circumstances  decrease the 
reliability of both the robot’s plans and the robot’s  world  representation.  The  overabundance of 
information  slows the planning  algorithms  down  greatly, just when  quicker  response  times are 
needed.  In  extremely  simple  environments  however, these systems  behave  beautifully;  they  can 
satisfy  all of the constraints listed  above. 

3.4.2 Behavioral Systems 

The  alternative to the symbolic  methodology is the behavior  based  approach. A 

behavioral  system is one that is made up of many  simple  behaviors,  complete in and of 
themselves,  linked  together in a way that is exploited  by  high  level  goals and/or a  complex 
environment.  This  approach has its roots  before  Shakey  was  even  imagined, but has only  recently 
started to grow to fruition. 

In 1949 Grey  Walter  began  building 
artificial creatures he  called  tortoises  (Figure 3.4) 
[Walter, 19531. These creatures had  only two 
vacuum tubes, two sensors (light  and  bump), and 
two actuators (wheels),  but  they  seemed to exhibit 
“exploratory,  speculative  behavior that is 
characteristic of most  animals”.  This  was 
accomplished  with  only two basic  behaviors:  head 
towards the light  when the sensor reports a value 
below a certain threshold, turn away  from the light Figure 3.4 - Walter’s  tortoise 
otherwise.  With these two behaviors the tortoises 
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would  wander the room,  heading  towards then away from the light, in a  complex  manner.  More 
astonishing than this is that the tortoises  exhibited  emergent  behavior.  When the batteries on the 
creature were running low it would  become  less  sensitive to  the light,  which was mounted  above 
the tortoise’s  hutch  where its recharging station sits. Since it is now less  sensitive to  the light, the 
tortoise would  wander  closer and closer to  the hutch, eventually  recharging  itself.  When the 
batteries reached  a  level  sufficient to trigger the creature’s avoid behavior, the tortoise would jerk 
awake and flee the light. Thus from these two simple  behaviors  emerge  something that appears to 
be  self-preservation. 

This  approach to robotics  lay  mostly dormant until around 1989  when  modern  behavior 
based  systems  took  form.  The  basic  idea  remains the same, but is now pursued using  modern 
engineering  ideas and modern  hardware. One of the first behavior  based  robots  was  Genghis, 
pictured in Figure 3.2 [Angle,  1g8g][Brooks,  19891.  Genghis had a total of 57 different  basic 
behaviors,  implemented as simple finite state machines  (FSMs).  These FSMs were  linked 
together  using Brook’s subsumption architecture  (also known as Brooksian  architecture).  They 
implemented  robust  walking and wandering  behavior in a six-legged robot, something  symbolic 
implementations  have  not  been  able to accomplish.  Genghis  could handle rough terrain, avoid 
obstacles, and walk on inclines. 

Behavioral  systems tend to achieve the real-time and embedded  capabilities  easier than 
symbolic  systems.  Behavioral  systems are distributed by nature, having separate behaviors  able 
to function  independently of each other. Because of this they tend to be robust:  when one 
behavior is unable to function there are others that will continue. It is also  easy to implement 
multiple  goals  in  behavioral  robots; you simply  have  multiple  behaviors  active at once.  The  place 
where these systems  suffer is in usefulness.  Symbolic  systems  leverage off  of the Artificial 
Intelligence  research  for the last 40 years,  which has figured out how to plan  complex strategies 
and accomplish  seemingly  high  level  goals. Thus within their simple environments they can 
accomplish  some  very  useful  functions.  Behavioral  systems  have  a  much  more  limited  repertoire. 
How to obtain  complex  high  level  behavior out of them is still an  open  question.  Since they are 
highly  parallel and distributed, classic  serial  programming  accomplishes  little.  Programming 
parallel  systems is a  young  field and not as well understood as serial  systems.  Mataric has built 
upon Brook’s foundation by integrating  world  representation into behavioral  systems  [Mataric, 
19921, incorporating  a  useful  aspect of the symbolic  approach, but this work has not equaled the 
control  systems  available to symbolic  robots. 

The  behavioral  approach has many  qualities that should  be in the Cloud. In fact, if 
complex  behavior  could  be  programmed in to such  systems, it would  result  in  exactly  what  is 
wanted  from the receivers and autonomous  spacecraft,  reliable, robust, reactive,  autonomous, 
and seemingly  intelligent.  The architecture presented in the rest of this thesis is an attempt at 
such a system. 
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3.5 How creatures should do work 

We have  seen the behavior we  want  from these  systems, and have  taken a look  at  how 
some  systems  have  accomplished this behavior. Now  we  will establish  some  design constraints 
DAG Networks  should  fulfill.  Inspiration  for  these constraints is drawn  from  influential  ideas 
from  Artificial  Intelligence. 

3.5.1 Nature 

Nature  provides us with the only  example of  an architecture that accomplishes  everything 
we could  want: the central  nervous  system of animals.  What  lessons  can we learn this example? 
Many  of these lessons  couple well  with ideas  from AI, and are presented later. One  lesson is 
important enough that it is presented on its own, the need  for  decentralization. 

Our  system  should  be  decentralized.  There is no CPU in  the brain, computation is 
distributed across the cerebellum and the cerebral  cortex and even the peripheral  systems in a 
way  we do not yet understand. Knock out a chunk of gray matter, and chances are a  person  could 
function  almost  perfectly.  Certain  systems in the brain are necessary for survival, but the 
destruction of any  one  system  will  not  break  all other systems  except  though  secondary  effects. 
This  shows the robustness of decentralized  designs.  This is because  behaviors  are separated and 
only  interface  through  non-critical  connections. 

Decentralized  systems  also tend to be  more  reactive.  This is because there is no 
bottleneck in communication  with  a  center; we do not  need to wait for the system bus to be  free. 
It is usually  easier for a distributed system to evolve, as modifying one behavior  can  not  imply 
having to modify  all others. Distributed  systems  also tend to scale better; new behaviors  can  be 
added  without modifymg the whole  system. All  of these are huge wins for  building  intelligent 
creatures. 

3.5.2 Society of Mind 

The  basic  foundation for the DAG networks is taken from Minsky’s  Society  of  Mind 
[Minsky, 19881. Two aspects of the Society of Mind  should  be  integrated into the system.  First is 
the idea of agents connected  by  functionality. An agent in Minsky’s  framework is defined to be 
“any part or process of the mind that by  itself is simple  enough to understand.” Key to this 
concept is that since the process is understandable, we should  be  able to encode the process  in  an 
algorithm.  These  agents are connected  based  on  functionality. If agent A needs the functionality 
of agent B to achieve its purpose,  agent A is connected to agent B by the ability to activate  it. By 
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thinking in terms of functionality, we can  easily  connect  different  behaviors  together.  From this 
idea we gain the constraint that behaviors  should  be  agents, that is an understandable process 
able to be reproduced  as  an  algorithm.  Furthermore these agents should  be  connected to each 
other based on functionality.  The  nodes and connectivity of our system  have  been determined. 

Second is the idea that thinking  can be represented as patterns of activation. In the 
Society of Mind,  intelligence  emerges  when  high  level  goals  activate some agents.  These  agents in 
turn activate other agents.  This  activation spreads and  eventually the goal is accomplished. At 

any  given point, the pattern of activation determines exactly  what is going on in  the mind.  This 
idea  tells us how  goals  should  be  represented in the system.  They  should  be  a set of behaviors to 
activate.  Once  active, these behaviors  should  accomplish the goal. 

On closer  inspection, this idea  can  be  seen as an analog of biological  systems. On a 
cellular  level,  each  neuron  can  be  seen as an agent  connected to other agents,  activation 
corresponding to the firing of that neuron. On a  higher  level, the brain is divided into areas 
specific to certain tasks, such as the visual  cortex for handling the vision  system and the inferior 
temporal  cortex  for  object  recognition. Each  of these areas can  be  seen as an agent,  but they also 
seem to be  made up of agents  themselves.  The  visual  cortex,  for  example, is divided into various 
layers,  each of  which seems to correspond  with an aspect of vision.  The  analogy of the Society of 
Mind fits the brain well. 

3.5.3 Streams and  Counter-Streams 

All goals do not  originate  from  some  central goal  repository.  The  environment  can  also 
inspire  goals.  For  example,  when  your  finger is immersed in flames a new  high  level  goal is 
introduced in  your  system  corresponding to removing  your  finger  from the fire.  This  means that 
goals  originate  both  from  sensory input and high  level  cognition.  The inspiration for how to 
merge these separate driving  sources  comes  from  Ullman’s  idea of streams and counter-streams 

[Ullman, 1996,317-3581- 
Ullman presents this idea in the domain of vision.  The  goal of his system is to match 

images  gathered by a camera  with stored images of the same  object or person.  Bottom-up 
processing starts on the input image and works its way towards the stored image.  Top-down 
processing  goes in the other direction, starting with a stored image and attempting to match it 
with the input image.  Each  level of processing  corresponds to different transformations the 
image  can  be  subjected  to. 

This  idea  also  gets its inspiration from nature. In the central  nervous  system,  for just 
about  every  ascending  pathway  (towards the brain) there is a corresponding  descending  pathway 
(towards a peripheral  system). As Ullman puts it, “If a  visual  area  in the cortex sends ascending 
connections to another visual area higher up in the hierarchy of visual  processing, then, as a 



general rule, the second  area sends reciprocal  connections to the first.”  This fact seems to 
indicate that the central  nervous  system  does  indeed  use  both  top-down and bottom-up 
processing.  Whether this processing is of the form  Ullman  imagines or not is an  open  question, 
but the prospects of bi-directional  computation  are  attractive. 

This  system  can  be  generalized to provide  us  with the solution of  how to control the 
patterns of activation.  Top-down  processing in this case  corresponds to activation that begins 
with  an internal goal of the creature. It represents conscious  action.  Bottom-up  processing 
corresponds to activation that begins  at the sensor  level. It can  represent both reflex  actions and 
the understanding of sensory input. The transformation at each  level is an information 
transformation. We already  know that behaviors are linked  based  on  functionality.  The 
functionality of a behavior  can  be  categorized  based  on the type of information it computes. As 

activation spreads from one node to another the type of information  being  computed  changes. 
This  provides us with the needed  transformation. 

For  example,  consider the simple  graph in Figure 
3.5. This  network  shows  how we could  implement 
Walter’s  tortoises in such  a  netwo k. As in animals, the 
sensor in this network is always  active. It feeds  an  analog 
signal into an  analog to digital  converter.  Comparitors 
test this value  against  a threshold and activate the correct 
behavior.  This  simple  system  will  recreate the high  level 
behavior the tortoises exhibited.  The  links in this diagram 
do indeed  correspond to functionality,  and  each  node is 
simple to implement. 

As shown, this network  behaves in a  completely 
bottom-up  fashion.  This  makes  sense, as the tortoises 
were  completely  reactionary  creatures. If we wanted to be 
able to have the tortoise be  able to accomplish the goal 
“return to hutch” we can  see  how  top-down  behavior 

Drive Towards 
From Light 

Analog to Digital 
Converter 

Analog  Signal 

Figure 3.5 - Behavioral 
tortoise 

would  work.  This  goal  would  simply  activate the Drive  Towards  Light  behavior and keep it active 
for as long as the goal  remains.  Since the hutch is right under the light, the tortoise returns home. 

3.5.4 Routines 

We have  determined the general  layout of the system, but the definitions we have so far 
could  easily  result  in a symbolic  type  robot.  To  see this consider a system  with three behaviors: 
Abstraction,  Reasoning, and Execution  (see  Figure 3.6). According to the definitions so far, this 
network fits our design  criteria. As robots  such as Shakey  have  shown, these three behaviors  are 
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simple  enough for us  to understand and program. 
They are linked  according to functionality. They 
can  easily  function in both a  top-down and 
bottom-up  manner. 

The  problem with this representation is 
that  the behaviors are too complicated.  The  result 
is a  system that  is less robust, less distributed, 
and less  flexible.  To  avoid this we need  some 
guidelines  on  how to design our behaviors.  This 
guidance  will  also  come  from  Ullman,  from his 
ideas on visual routines [Ullman, 1996,263-3151. 

The  idea  behind  visual routines is that 
there exists a set of elementary  visual operations 
that can  be  combined in different ways  produce 
routines capable of handling  complex  spacial 

Abstraction 

Figure 3.6 - Behavioral does 
symbolic 

tasks.  These  elementary operations should span the space of the tasks we want to accomplish. 
The  application of these routines is determined both by the visual input and the specific task at 
hand. The output of these routines are incrementally put together to allow later processing to 
benefit  from these results.  This  idea of a  spanning set of elementary operations has proven to be 
extremely  powerful and fits well the model  we have  developed so far. 

Rao identifies two key  issues that one  must  deal  with  when  designing  using routines [Rao, 
19981. One,  what is a good set of elementary  operations? Two, how do these primitives get 
strung together to perform a specific task? We are well on the way to answering the second 
question, and the answer to  the first question is exactly the guideline we  want for designing 
behaviors. 

A real  life  example of routines in action  comes  from the eyes of frogs  [Lethrin, 19591. 

Lettvin  identified four operations that a frog’s  eye seems  specifically tuned to accomplish.  He 
called operation 1 “sustained contrast detection”.  This  operation  activates when  an  object either 
lighter or darker than  the background  moves into sight and stops.  Operation 2 is “net convexity 
detection”.  This  operation  seems to be  a  bug  detector; it responds  best to small  object  moving in 
a  jerky  manner  across the frog’s  visual  field.  Operation 3 is a “moving  edge detector” that 
activates  most  strongly  when an object  moves  quickly  through the frog’s  visual  field. The fourth 
operation is “net dimming  detection”.  This  operation  responds to a  darkening of the frog’s  visual 
field.  These  four operations can be used  by the frog to build routines to catch  flies and avoid 
predators, the two most important high  level  goals to a  frog. 

The  example of the frog  shows that these basic operations should  be  fairly  specific to  the 
task at hand, making it difficult to make  sweeping  generalizations  about  what  behaviors  should  be 
used in  this control  system.  They  should  be  simple,  allowing  complex  behavior to emerge  from 
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interconnection rather than being  explicitly  programmed.  They  should  also  be  designed to 
provide a useful  abstraction to other behaviors.  When  activated, the next  higher  level  of 
activation  should  readily  use the information  they return. 

3.5.6 One-Shot Learning 

One  of the most  difficult  problems  intelligent  control  systems  face is how to learn. Even  if 
a  system is capable of accomplishing  complex  behavior,  how  can it know  how to accomplish it 
unless  explicitly  told? In the system we are developing this problem translates to how to learn 
goals, and how to learn what patterns of activation  can  lead to accomplishing that goal. 

For this we turn to a powerful  idea that has emerged in machine  learning. Two 
buzzwords  have  become  associated  with this idea:  One-shot  learning and Near-miss  learning. 
Such  a  system  can learn from  a  single  example,  using further examples to refine the concept  it is 
learning.  One of the first systems to display  such  learning  was  Winston’s  Arches  program 
[Winston, 19701. This  system  was  presented  a  description of an  arrangement of  block and then 
told  whether that arrangement  was  considered  an  arch or not. By using  differences  between the 
stored representation of “arch” and the scene it was just told was  an  arch, the system  would  refine 
its description.  After  only a few  example a correct  conception of what  an  arch  was  emerged. 

This  style of learning  has  proven to be  extremely  powerful  when it can  be  applied 
correctly. Two more  modern  examples of systems that employ  one-shot  learning to acquire 
grammar are Kirby’s  evolving population of learners [Kirby,  19981 and Yip and  Sussman’s 
phonetic knowledge  acquisition  engine  [yip, 19961.  One  of the important ideas that emerged 
from Yip’s treatment of the subject is that all one needs to accomplish  one-shot  learning is a high- 
level  concept  linked to a bit  vector. In his program the high  level  concept is a word  with the bit 
string representing the corresponding  phoneme and meaning  vectors. 

We have  a  high  level  concept: the goal.  The pattern of activation translates easily into a 
bit string. Thus our system  should  be  able to employ  one-shot  learning in order to learn new 
goals.  For  example let us  suppose we have  a  robot that knows  how to drive straight and how to 
turn. We want to teach this robot the concept of “avoid”.  To do this we provide the robot  with a 
positive  example of what it means to avoid; we tell  it to turn away  when sensor1 reads  too  high. 
At this point the robot sees what  activation  led to “avoiding” and remembers that it should turn 
away  when sensor1  reads  too  high.  What we  want is a more  general  avoid  behavior  though,  not 
one tied to sensorl. Thus we provide the system  with another positive  example; this time when 
the robot turns away  when sensor2 read too high.  One-shot  learning  would take a look at the 
difference between these two examples, and see that it does  not  matter  which  sensor  read  high, 
simply that some sensor reads  high.  Thus  avoidance  becomes  linked to  the pattern of activation 
that corresponds to turning away  when  some  single  sensor  value  crosses a threshold.  Further 
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learning  could  teach the system  how to “avoid X”, linking the concept  with the sensor and 
threshold  needed to avoid  something  specific. 

3.6 Summary 

This chapter described  a  system  for  building  control  systems for intelligent creatures. An 
intelligent  creature is defined as an autonomous  agent that co-exists in  the world  with humans 
and is  seen as an  intelligent  being.  There  have  been two frameworks for such  systems  in the past. 
Symbolic  implementations  rely  on  reducing the world into symbols,  computing  based  on  those 
symbols and internal state, then acting on these  computations.  Behavioral  implementations  have 
developed to address some of the shortcomings of symbolic  systems. A behavioral  system 
connects  together  simple  behaviors and relies  on the complexity of the environment to provoke 
intelligent  action. 

Ideas  from  successful  systems  motivate  what the control  system should be  like.  They  lead 
to a system  based  on patterns of activation of simple,  yet  expressive  behaviors.  This  system  uses 
both bottom-up sensor inputs and top-down  goals to determine how behaviors are to be 
activated.  One-shot  learning  can  be  used to match these high  level  goals  with  matching patterns 
of activation. 



Chapter 4. The Control System Design 

Figure 4.1 - An example DAG network 

4.7 An outline of the  design 

The  previous chapter provided  many  guidelines for how to design this control  system. In 
this chapter these pieces  will be put together into an  architecture  capable of meeting the 
requirements set forth. The  design  consists of two layers.  The top layer is the data layer; its 
purpose is the manipulation of data. There are two  types of elements in  this layer: sensors and 
data behaviors.  The  lower  layer is  the action  layer,  where  all the interfaces to the actuators lay. 
All the elements in this layer  are  action  behaviors that control the “motor”  functions of the 
receiver and the actuator interfaces.  Data  behaviors  can  activate  action  behaviors,  which is the 
only way the two  layers  can interact. 

Hovering  nebulously  over  these  layers is the goal  engine.  This is where the mappings 
from goals to patterns of activation are kept.  Currently  active  goals  activate  various  behaviors, 
igniting the robot’s  processes.  Data  behaviors  have the ability to both  activate and suppress goals. 
Figure 4.1 shows  an  example  network that is part of the network  for  a  six-legged  robot that allows 
the robot to walk. 
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4.2 The data layer 

4.2.1 Data behaviors 

Data behaviors are small  functional  units. They take in arguments and produce an 
output, just as in normal  functions.  They  execute  serially, just as most  programmers are used to 
dealing  with.  They  can  have state while  activated.  The  complexity of a data behavior is not 
limited by the system,  though a good  behavior  should  be  simple,  small,  have  limited 
dependencies, and have  a  small constant running time.  These features, which  match  how 
programmers  program,  should  make it easy for developers to design data behaviors. 

There are differences  between  behaviors and typical  functions. In a behavior you are 
rarely  passed arguments directly,  you  obtain them by either querying  a  sensor or activating 
another data behavior.  This is because you do  not  know if  you  were  activated in a top-down 
fashion or a bottom-up fashion. If bottom-up, then the data you  need for your  computation 
should  be  readily  available,  but if somebody  higher up the hierarchy  activated  you, the data you 
require  might  not  be  available and further computation will be  needed. By enforcing this rule,  all 
connections in  the layer are made  two-way. 

A request  for  information  activates those behaviors 
able to provide it. It can  be  made either asynchronously or 
synchronously.  In the asynchronous  case the behavior does 
not  wait for the data, but continues  executing. A signal is 
sent to  the requesting  behavior  when the data  becomes 
available.  In the synchronous  case, the behavior  waits for Left Step Right Step 

the data  before  continuing  execution. 

Walk 

For  example,  let us consider the walk  behavior  from Figure 4.2 -Walking 
Figure 4.1 and Figure 4.2. This  behavior  may  implement  a 
very  simple  walking routine, take a step with the left side, then one  on the right,  repeat. It is 
dependant upon the two stepping  routines, but does  not care how  “stepping” is carried out. Some 
response from the step behaviors may be expected, perhaps a failure  condition. To keep this 
example  simple, the assumption is that  the behaviors  do  not return any data. In the Figure 4.1, 
the walk  behavior is activated  directly  from  a  goal, but could just as easily  been  activated  by 
another behavior  such as pace. Pseudocode for this behavior is: 

boolean side; 

side := not(side1; 
if(side)  get(right  step, synchronous) else 

get(1eft step, synchronous); 



As long as the “walk”  goal is present, the walk  behavior  will  be  active.  While it is active it 
has state as represented by the side bit.  This  bit  represents  whose turn it is to take  a step, the left 
side or  the right.  The  behavior  simply  takes the correct  action. As long as the behavior  remains 
active, it will loop,  flipping  side and taking  alternating  steps. 

4.2.2 Sensors and Sensor behaviors 

Sensors are a  special  case in  the data  layer. A sensor is connected to a data  behavior 
(which  may  have  multiple sensors attached to it), which is called a sensor  behavior.  The  special 
aspect of sensor beh  viors is that they may  always be  active.  This is a necessary  condition for 
bottom-up  processing. 

Consider the example of a thermometer as a  sensor. A robot may  want  a  behavior that 
removes this sensor  from its location if the ambient temperature crosses  some threshold. In this 
case we would  want the sensor behavior  associated  with the thermometer to always  be  active and 
always  checking the threshold. If the temperature exceeds the threshold it can set a reaction in 
motion  which  will  remove the sensor. 

4.2.3 Connections between data behaviors 

Connections  occur  between  behaviors  when there is a data dependence  between the two 
layers.  When one behavior  needs the information that the other behavior  computes, or needs the 
action that the behavior  results in, it  is linked to it by the power of activation or suppression. 
Usually these links are conditional,  they  are  not  used  each  time a behavior is activated.  They 
depend  on the state of the system  at the time  and the internal state of the behavior.  Sensors 
cannot  be  dependent  upon  behaviors  for  activation.  They are always  active  by  default.  The  sensor 
behaviors  connected to the sensors may  be deactivated,  waiting  for the system to want  an 
interpretation of the sensor input. 

There are two  types of activation  for  data  behaviors.  Some  behaviors,  such  as the step 
behaviors  above,  should  be  activated,  execute  once, and then deactivate.  The  tasks  they  perform 
are done and if  we want the system to take multiple steps, the  step behavior  should  be  activated 
multiple  times. 

Other  behaviors  should stay active until some other agency  deactivates  them.  The walk 
action is an  example of this. A walking  behavior  should  not just take two steps, it should  continue 
taking steps for as long as walking is desired.  These  are  continuous  behaviors,  which  do  not 
deactivate  after one execution but loop  until  deactivated. 
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4.2.4 Connections to the action  layer 

The  links to  the action  layer  are  similar to links between data behaviors.  They  can  be 
synchronous or asynchronous.  They  can  be  one-shot or continuous.  The  difference  between 
these links is that links to the action  layer  may  carry  arguments.  This is because  action  behaviors 
cannot  activate  data  behaviors, and thus have  no way  of requesting  extra  information. By 
allowing  arguments to be  passed to action  behaviors we  allow the data behaviors to provide  some 
of the abstraction of the actuators. 

There is biological  evidence that there are complex transformations that change  motor 
plans into motor  commands [Bizzi, 19911. Argument  passing  allows part of this transformation to 
take place in that data  layer  where  reasoning and planning is meant to occur, and part to take 
place in the action  layer  where  execution is meant to occur. Thus the full  power of the system is 
available  for  controlling  actuators. 

4.2.5 Data behaviors and goals 

The data layer is  the only part of the system that interfaces  with the goal  engine.  This is a 
two-way interaction: the engine sets up patterns of activation in the data layer, and data behaviors 
can  activate and deactivate  goals. A goal is associated  with certain behaviors. It may be  a  simple 
relationship,  such as the walk  goal  simply  activating the walk  behavior or a more  complex 
relationship,  such as a “pat head and rub belly”  goal. 

The  connection  goes the other way as well; data behaviors  can instantiate and suppress 
goals.  This is a  powerful  mechanism that allows the system to adapt to its environment and react 
in complex  ways.  Consider the example of Walter’s  tortoises.  One way  of getting them to return 
to their hutch would  be to have  a battery low sensor and have its associated  sensor  behavior 
activate a return to hutch behavior.  When the battery low indicator turns off, the return to hutch 
behavior is deactivated and everything  works out well. Another way of accomplishing the same 
thing  would  be to have the sensor behavior instantiate the get  power  goal.  This  goal in turn would 
activate the return to hutch  behavior.  When the sensor no  longer reports a low battery this goal 
can  be  removed. 

The  second  way is a much  more  robust way of achieving the desired  result.  First, it 
provides  a  layer of abstraction  between the low battery signal and the return to hutch  behavior. 
By having  a  get  power  goal, we allow that  the world  may  change or  that there may be multiple 
ways of getting  power. If the power  supply  were  no  longer  located in  the hutch, the second 
method  would  require  less  work to rewire the system.  Second, it allows  for other behaviors to 
take precedence  over the return to hutch behavior. If the robot  were in the middle of executing  a 
complex task, we would  not  want it to stop if its power situation were  not  critical.  The  direct 
connection  should  be  used for reflex  actions,  ones the robot  should  have no control  over. 
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4.2.6 More on bottom-up activation 

Top  down  activation  proceeds in a  straightforward  manner. A behavior  needs 
information it does  not  have so it activates  behaviors that are able to produce the information. 
How bottom-up  execution is to progress is a little  more  complicated. If activation  were to spread 
in a way  analogous to top-down  activation, by  activating  all  possible  behaviors that can  use the 
information  produced, we  would  soon  be  swamped  by  activity  not  relevant to anything at hand. 
Consider  how  many tasks vision is used  for. If each of these tasks were  always  active,  we  would  be 
overloaded  by  doing too much at once. 

A general way to solve this problem is  to associate  with  each  behavior a list of behaviors 
that  it should  activate  upon  completion. I will  refer to this list as the propagation list. Any 
behavior or goal that activates  a  specific  behavior may  modify that behavior's  propagation list. 
Behaviors  also  have an intrinsic propagation list that cannot  be  modified.  This intrinsic list can 
be  used to define a default  bottom-up  activation  scheme  for the behavior.  The  variable  list  allows 
bottom-up  processing to occur as a  result of other activation. 

The  variable  list has various other. It provides  a natural way  of controlling  what is a  one- 
time  activation and what is a  continuous  activation. If  you want to activate  a  behavior in a 
continuous  fashion, you  simply  add that behavior to  its own propagation  list. When the behavior 
terminates it will start itself  back  up. It also  provides  a natural way  of implementing  callbacks 
and looping  behavior.  Later  I  will  show  how this can  be  used to help  avoid  problems inherent in 
parallel  systems. 

4.2.7 Parallel  execution 

This  brings  us to the idea that multiple  goals  can  be  active at one,  multiple  data  behaviors 
will be active at once, and multiple  action  behaviors  will  be  active at once.  This  results in various 
complications to  the basic  scheme.  How do data  behaviors  cope  with this complexity? 

One  complication that arises is that multiple  behaviors  may  influence  a  single  behavior, 
call this single  behavior B. Some set of behaviors may want B active and another set may  want to 
keep B from  becoming  active.  Should B be  activated or not?  Another  similar  problem is what 
happens when  multiple  behaviors  want to effect  an  actuator in different  ways. If one behavior 
wants the leg  down and another wants it up,  what  should the leg do? 

The  answer to this problem is  to assign a priority to tasks. When a goal is activated it is 
assigned  a  priority, either by the goal  engine or  the behavior that activated  it.  This  priority is 
given to behaviors it activates. If multiple  nodes  want to activate a behavior, that behavior  takes 
on the highest  priority  amidst its activators. If there are nodes that want to deactivate  an  active 



behavior then some  kind of resolution  scheme  must  be 
implemented.  What this scheme is can  be  left up  the 
implementation, but it must exist. 

Another  type of problem that can  arise in parallel  execution 
is deadlock.  Deadlock  can  happen  when  one  behavior is waiting  on 
a behavior that is waiting  on the first. In order for this to be  a 
problem,  two  behaviors in a loop  must  be  waiting  on  each other 
synchronously.  Consider the partial network  shown in Figure 4.3. 
Here, if A is activated it will  activate B then wait for B to finish its 
execution. B will then attempt to activate A, and then wait for A to 
finish, which can now  never happen. 

The situation is even  more  complicated in  the face of 
bottom-up  activation. If A was  activated  in  a  top-down  fashion, 
and B was  activated in a  bottom-up  fashion,  deadlock may happen 
even  when there is no loop in  the picture. 

There is no general runtime solution to such  deadlock. 

1 

Wait 
synchronously 
on B 

Wait 

Figure 4.3 - 
Deadlock 

Rather, the designer of the network  must  use some kind of locking  scheme  for  behaviors that 
make  synchronous  calls,  ensuring that such situations never  arise.  It is interesting that  the brain, 
a massively  parallel  computer, does not  seem to ever  encounter  deadlock. It seems that there is 
no such thing as a lock or a synchronous  call in nature, and thus no danger of deadlock.  In this 
type of  network,  it  seems we should take a  cue  from nature and avoid  synchronous  calls  whenever 
possible.  Unfortunately, this likes  in the domain of the design of the specific  network,  not in the 
design of the architecture. 

4.2.8 Deactivation 

It is clear  how a behavior  should be activated,  simply start executing.  Deactivation is a 
little more  complicated. Not all the activities  associated  with  a  behavior are contained  within that 
behavior.  For  example, in the walk  network  described  above  even if the walk behavior is left 
active, one of the step behaviors will continue  executing.  To  avoid this situation deactivation 
should be  propagated down  all the behaviors the deactivated  behavior  can  activate.  This 
propagation is done at a low priority.  Thus, if other behaviors are currently  executing the 
behaviors this propagation  reaches, the low priority will  keep them from  deactivating. If the only 
activation for a behavior  comes  from the deactivated  behavior, then the active  behavior  should  be 
deactivated  no matter what. 

When  a  behavior is deactivated, if the priority of the deactivation is enough to warrant 
deactivation, the execution of the behavior is halted right  where it is  and  the deactivation is 
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propagated  on to other behaviors that may  have  been  activated.  This  deactivation is also  passed 
down to the action  layer, and may  have to be  passed into the goal  engine. 

4.3 The action layer 

The  action  layer is  the part of the system that interfaces  with the actuators.  Elements of 
this layer are either action  behaviors or actuator  interfaces.  The  purpose of the action  behaviors is 
to abstract away the complexity of dealing  directly  with  actuators. 

4.3.1 Actuator interfaces 

Just what an actuator  interface is depends greatly  upon the sensor. To move an arm 
about, a certain pulse  width  modulated  signal  might  have to be sent to a servo.  To turn a wheel, 
perhaps a certain current must  be  supplied to a  motor.  Perhaps a value stored in a  register 
controls the hardware that accomplishes these low-level  actions.  In this case the actuator 
interface  would  be storing a  value in that register.  Whatever the interface, it provides  a  software 
level method of controlling the actuator. 

4.3.2 Action behaviors 

The  purpose of action  behaviors is to transform the actuator  interfaces into higher level 
interfaces that  the data layer  will  want to deal  with.  Action  behaviors  act  very  similarly to data 
behaviors,  but in a simpler  fashion. They  do  not  have to communicate  with  any other layer or the 
goal  engine.  They  do  not  have  bottom-up  processing, for as far as we currently  know,  muscles  do 
not initiate any  processing. 

Though this layer is simpler than  the data layer, the task action  behaviors  have to 
accomplish is not  simple. Developing a high-level  language  for  controlling actuators in  an 
unconstrained setting is still an  active  area of research.  The  systems that currently  exist  are 
extremely  complex.  One of the most  successful  has  been HANDEY [Lozano-Perez, 19871. 
HANDEY is an  example of a  symbolic  system. It reduces the world to a conjlguration space and 
is able to produce  complicated plans such as telling  a  robotic arm how to grasp an object,  pick it 
up, put it down  in a new  position so that it can  re-grasp it in a way so that it could  be  moved to a 
terminal configuration. 

Almost  all  such  systems  require  at  least  fairly  complex  mathematics in order to translate 
an end position for an arm into a set of actuator settings. This is known as the inverse-kinematics 
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problem. An interesting biology inspired approach that avoids the inverse-kinematics  problem is 
presented by  Bizzi  [Bizzi, 19911. This  approach  suggests that there is a coarse  map of limb 
positions in the pre-motor areas of the spinal cord.  Vector  combinations of motor outputs from 
different areas of this spinal  map  produce  complex  motor  behaviors.  This  approach  was  one of 
the inspirations behind the idea of an  action  layer.  The  pre-motor  area of the spinal cord 
corresponds to action  behaviors,  which  can  easily  compute  such  vector  combinations.  Once an 
action  behavior is activated  with an argument that describes a position for  the arm to be in, a 
system  similar to one Bizzi describes  can  position the arm.  The  hope is that since nature found 
such an elegant  solution to the inverse-kinematics  problem  in the case of motor  systems, other 
systems will  have  similar  solutions.  The  action  layer is a fundament that encourages  such 
formalisms.  Other than  in  the ways mentioned  above, the action  layer  works just as the data 
layer. 

4.4 The goal engine 

The  goal  engine has three main  purposes:  keeping a list of active  goals,  mapping  goals to 
sets of behaviors, and learning  new  goals.  It is this list that is the interface  between  behaviors and 
goals.  The list of active  goals is the activities the system is currently  engaged in. A behavior  can 
add to the list and delete  from the list. When a goal is added to the list the process of activating  all 
the corresponding  behaviors is started. When a goal is deleted  from the list the process  of 
deactivating  all the corresponding  behaviors is started. There are few  complications  behind either 
this  or  the mapping.  The  learning  system is more  complicated. 

As the previous chapter said, the goal  engine  was  designed to allow for one-shot  learning 
of new  behaviors. A complete  description of the mechanics of one-shot  learning is tangential to 
the purpose of this paper, but Winston’s  description of his ARCH program  covers the subject 
beautifully  [Winston, 19701. This  learning will  allow the goal  engine to learn new  goals,  which are 
essentially  a  list of activations  associated  with the activity  being learned. 

Currently the learning  aspects of the goal  engine  remain pure theory.  One-shot  learning 
should be  implementable, given the setup, but it is not  a  critical part of the system.  It is a feature 
that will be  added at a later date. 

4.5 Example Networks 

Now that the complete  system has been  described, I will present a  few  example  networks. 
Three  examples  will  be presented, first is a more  complete treatment of the walking  example 
given  above.  This  shows  how  basic  functionality  can  be  implemented under the system. Next I 
will  show  how  easily this architecture can  replicate Brook’s subsumption architecture by  building 
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a network  similar to the walking routines from  Genghis.  This  shows  both the ability  of this 
architecture to simulate  subsumption  architecture and an example  of  a  network that exhibits 
complex  emergent  behavior.  The last is a  simple  example of  how DAG Nets  can  be  used to 
compute GPS solutions. 

4.5.1 A walking network 

Teaching a six-legged  robot to walk is not  a  difficult  task.  Teaching  a  six-legged  robot to 
walk robustly  in a complex  environment is something that few  systems  have  satisfactorily 
accomplished.  In this section  I present a network that allows  a  six-legged  robot to walk.  This is a 
simple  walking  routine, but is modular  enough that it  can  be  made  robust  without  great  effort. 

Legs on this robot  have  two  servos, the A servo which controls the forward-back  motion 
of the leg and the B servo which controls the up-down  motion of the leg.  Each servo  has  a 

boolean side; 

side := not(side); 
i f   ( s ide)  { 

addgropagation(right step, s e l f ) ;  
get(right  step, asynchronous); 

addgropagation(1eft  step, s e l f ) ;  
get(1eft  step, asynchronous); 

1 else { 

1 

Figure 4.4 - Asynchronous walk  behavior 

get(rleg1-up,  asynchronous); 
get(rleg1-forward,  asynchronous); 
get(rleg3_up,  asynchronous); 
get(rIeg3_forward,  asynchronous); 
get(lleg2_up,  asynchronous); 
get(lleg2_forward,  synchronous); 

get(rleg1-down,  asynchronous); 
get(rIeg3_down,  asynchronous); 
get(lleg2down, synchronous); 

get(rleg1-back,  asynchronous); 
get(rleg3_back,  asynchronous); 
get(lleg2_back,  synchronous); 

Figure 4.5a - Right step behavior 

get(lleg1-up,  asynchronous); 
get(lleg1-forward,  asynchronous); 
get(lleg3_up,  asynchronous); 
get(lleg3_forward,  asynchronous); 
get(rleg2_up,  asynchronous); 
get(rleg2_forward,  synchronous); 

get(lleg1-down,  asynchronous); 
get(Ileg3_down,  asynchronous); 
get(rleg2_down,  synchronous); 

get(lleg1-back,  asynchronous); 
get(lleg3_back,  asynchronous); 
get(rleg2)back,  synchronous); 

Figure 4.5b - Left step behavior 



corresponding  register  whose  value moves the servo to an absolute  position.  The  action 
layer in this case is very  simple.  Each  leg  has  two  action  behaviors, s e t A  and set-B that simply 
replace the contents of the corresponding  register  with the argument. Each servo has an 
associated  sensor, get-A and get-B that returns the current position of the servo. 

There  are a few constants built into the system: legup,  legdown, legforward, and 
leaback. Each constant is the value to place into the correct  register to move the leg into the 
corresponding  position. The walk  behavior is very  similar to the one presented above, but takes 
into account the warnings  about  deadlock.  Figure 4.4 shows this behavior.  The  right step and left 
step behaviors are simple  procedures that explicitly  move the legs in the correct manner for 
walking.  Figures 4.5 a & b  show the source for these behaviors. A synchronous  action  behavior 
call is made  when  we  need  all the above  calls to finish  before  continuing.  There is an implicit 
assumption here that the synchronous  calls are not faster than  the calls  above  them. 

All that is left  is to implement the various leg positioning  calls  such as rlegl-up and 
rlegl-forward.  These are simple  behaviors that call the correct  action  behavior  with the 
appropriate constant, such as rlegi-set-B  with  1eg;up  for  rlegl-up.  Once that call has been 
made the behaviors  wait until the corresponding get-A or get-B sensor behavior returns a  value 
equal to the argument, thus making sure the servo has reached the correct  position. 

Part of the network  for this system is shown  in  Figure 4.6. This  figure  only  shows the 
network  corresponding to one of the  step behaviors, but  the other half  of the network is 
symmetric.  The  walking  implemented  by this network is not  very  robust. If one of the legs  were 
blocked from achieving their position or if there were  a  hole beneath one of the legs, the network 
would  never  know.  Because  each of the leg  positioning  behaviors is  its own module, they could  be 
made  more  robust and more  complicated  easily.  The  next  section  shows  an  example of a  more 
robust  walking  network. 

Figure 4.6 - A simple walking network 



4.5.2 Genghis’ walk 

The  example in this section  shows  two  things.  First of all, it mimics the walking  behavior 
of  Genghis,  showing that DA Networks share the power of subsumption  architecture.  Second, it is 
an example of a fairly  robust  walking  design,  taking  advantage of emergent  behavior.  Each 
behavior in this section  exactly  mimics  one  behavior  from the network to control  Genghis 
[Brooks, 19891. 

The  basic  behavior in this system is standing. This is accomplished  by  having a stand 
data behavior as depicted in Figure 4.7. This  behavior  simply sets each  leg to a default that is a 
standing position. 

The  next step is to implement a simple  walk.  This  requires 5 different  types of behaviors. 
These 5 behaviors  work  together to produce  various  simple  gaits. 

1) Leg down sensor behaviors.  These  sensor  behaviors sit on  each of the get-B sensors. 
They are triggered  when the get-B sensor indicates that the leg is not in the down  position.  When 
this is sensed, the leg is  to the down position.  This forms six  independent  negative  feedback 
loops, one for  each  leg’s B motor.  These  behaviors  correspond to  the leg down machines in 
Genghis.  Figure 4.8 shows an  example  leg  down  sensor  behavior. 

2 )  Alpha balance  behaviors.  This is the feedback  loop for the A motors  and it involves  all 
6 legs  simultaneously.  This  behavior  monitors the position of the A motor  for  each  leg,  treating 

rlegl-set-A(A-init); 
rlegl-set-B(B-init); 
rleg2-set-A(Adinit); 
rleg2_set_B(B_init); 

lleg3-set-A(A-init); 
lleg3-set-B(B-init); 

... 

Figure 4.7 - Stand  data 
behavior 

if(rleg1-get-B I =  leg-down) 
rlegl-set-B(leg-down); 

sum := rlegl-getp + rleg2-get-A + 
rleg3-getp + l l e g l + g e t p  + 
lleg2-getp + lleg3-get-A - 
( 6  * leg-middle); 

correction := sum / 6 ;  
rlegl-set-A(rleg1-get-A + correction); 
rleg2-set-A(rleg2-get-A + correction); 
rleg3-set-A(rleg3-get-A + correction); 
llegl-set-A(lleg1-getE + correction); 
lleg2_set_A(lleg2_getp + correction); 
lleg3-set-A(lleg3-get-A + correction); 

Figure 4.9 - Alpha  balance  behavior 
~~ 

Figure 4.8 - leg  down sensor 
behavior 



straight out as zero, forward as positive and backwards as negative. It sums these six values and 
tries to set each so that the sum is zero.  It does this by sending  an  identical  message to all six 
set-A action  behaviors,  which moves  each  leg an amount in the needed  direction to move this 
sum to zero.  Thus if one leg happens to move forward  for  some  reason,  all  legs will  receive a 
series of messages to move  backward  slightly.  This  behavior stays active. There are a few  ways to 
accomplish this. This  behavior  could  be in  the propagation list of some of the sensor  behaviors. 
It could  be started up in continuous  mode by some other behavior or goal. Or it could  be 
activated  once  and then add  itself to its own propagation  list.  This  example  simply  makes it a 
sensor behavior.  Figure 4.9 shows the psuedocode for this behavior. 

3) Alpha  advance  behavior.  There are one of these behaviors for each  leg. It monitors the 
position of the B motors and is triggered when its leg is raised.  When  triggered it forces the leg 
forward. It does this at a  higher priority than the alpha  balance  behavior, thus while this behavior 
is active the corresponding leg  moves forward and the alpha  balance  behavior moves  all other legs 
back.  When  it is finished the leg  down  behaviors  will  bring the leg  back  down to  its normal 
standing position.  The  source  for this behavior is in Figure 4.10. 

4) Up  leg trigger.  This  behavior  lifts a leg  when it is activated. It does this at a priority 
level  high  enough to overcome the leg  down  behaviors.  There are one of these behaviors  for  each 
leg.  With this behavior the robot  can  very  nearly  walk. If an up leg trigger  behavior is activated, it 
lifts its leg,  which  triggers the alpha  advance  behavior.  This swings the leg forward and all other 
legs  swing  back,  moving the robot  forward.  The  leg down machine will then put the leg  down. 
The  psuedocode  for this behavior is shown in Figure 4.11. 

5)  Pattern generator.  This is the final  piece of the machinery  for  walking. Its purpose is 
to sequence  walking by activating the  up leg trigger  behaviors in an appropriate pattern. In 
Genghis,  two patterns were  used.  The first resulted in the alternating tripod gait, the same  gait 
the first walking  example  used.  Activating  lift  triggers to appropriate leg triples simultaneously 
accomplished  this.  The  second  produces a standard back to front ripple  gait  by  activating  legs in 
series.  Changing this behavior  easily  changes the robot’s  gait.  This  behavior should be  active for 
as long as we want the robot to walk. The  code that produces the tripod gait is reproduced in 
Figure 4.12 

These  behaviors are enough to result  in  a  simple  walking  activity  similar to that 
accomplished by the previous  example.  Genghis  took this behavior a little further with the help  of 
a few  more sensors and a  few  more  behaviors.  There are 21 more sensors in Genghis:  a  force 
sensor for  each  motor on each  leg, two “whiskers’’,  an inclinometer, and six infrared sensors. 
Genghis  also has 6 more  behavior types. 
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Force  balancing  helps  compensate  for  rough terrain. The  force that motor B is exerting is 
monitored, if it crosses  a threshold the leg is held  where it is.  The  rational  behind this is that if a 
leg is resting  on  an  obstacle and pushing  down,  it will be  trying to lift the rest of the robot, 
resulting in high torque on the motor.  In this situation the leg should  be  left  where it is, as it is 
already  providing  enough support for  walking.  There  are 6 of these  behaviors,  one  for  each  leg. 

Leg lifting is another mechanism  for  handling  rough terrain. These  behaviors  monitor 
the force on the A motors. In general  you  want to lift the leg  as little as possible to speed up 
walking.  This  idea  fails  when there is an  obstacle in front of the leg. If there is something  keeping 
the leg from  swinging  forward, these behaviors sense it and attempt to lift the leg  higher.  There is 
one of these behaviors  for  each  leg. 

Feelers are the behaviors that use the information the whiskers  provide.  If the whiskers 
detect an object in front of the robot, these  behaviors  make it so that the legs  on the appropriate 
side are lifted  higher on the next step cycle.  There are two of these behaviors, one for  the right 
whisker and one for the left. 

pitch  stabilization is a  behavior  used to compensate  for  force  balancing  during  times  it is 
the wrong thing to do. When the whole  robot is pitched  forward, there will be more  force on  the 
forelegs.  When it is pitched  backwards, the rear legs  will see  a  heavier  load.  This  would  cause 
force  balancing to keep these legs  from  being  lowered  all the way, causing the robot to sag and 
increase the pitch  even  more.  These  behaviors, one for forward  pitch and one for  backwards, 
suppress force  balancing under these conditions. 

Prowling is a  simple  behavior that keeps the walking  behavior  inhibited  until the IR 

detectors sense motion. It is a unique behavior that takes its input from the IR sensors and 
activates  when it senses a change. 

if(rleg1-get-B != leg-down) get(rlegl-ug-trigger, asynchronous); 
rlegl-set-A(leg-forrd);  get(rleg3_ug_trigger, asynchronous); 

get(lleg2-up-trigger. asynchronous); 

Figure 4.10 - Alpha  advance 
behavior 

rlegl-set-B(leg-up); 

Figure  4.11 - Up leg  trigger 

s leeg( l .2 ) ;  /* Wait 1.2 seconds */ 

get(llegl-up-trigger, asynchronous); 
get(lleg3-up-trigger. asynchronous); 
get(rleg2-up-trigger. asynchronous); 

s leep(l .2);  /* Wait 1.2 seconds */ 

Figure 4.12 - Pattern  generator  for  an 
alternating  tripod  gait 



The  final  behavior is steered prowling.  The IR detectors tell this behavior  what side of the 
robot the movement is coming from. It then shortens the length of the backswing of legs on that 
side of the robots.  This has the effect of turning the robot towards the source of the motion.  Thus 
the robot  can  follow  slowly  moving  robots. 

These  behaviors  complete the control  system of Genghis.  Each of them translates directly 
into DAG behaviors  like those described in  the basic  walking  example.  This  shows that DAG 
networks  have  at  least as much  power as subsumption  architecture.  They  can  describe  systems 
just as robust  and distributed. The links between  elements  allow  complicated  emergent  behavior 
to result  from the basic  behaviors, just as in subsumption  architecture. 

Note that Genghis is a purely  reactive  system, as is each of its components.  Because of 
this there are no  goals in this system, nor do  any of the behaviors return any  values.  The  action 
layer  components of the system  were  extremely  simple.  This  shows that the Genghis  example did 
not  utilize the full  power of the system, yet it was  able to exhibit  fairly  complex  behavior. 

4.5.3 A simplified GPS solution 

This  section presents a simplified  network for computing a GPS solution.  The  system  in 
this example  ignores  many of the complexities that would  actually  arise in computing  such  a 
solution.  The  needed  calculations are simplified, and the receiver in the example has only  four 
channels, just enough to track the four  satellites  needed for a solution.  These channels are the 
sensors in the example,  whereas in an  actual  receiver  lower  level sensor inputs would  probably  be 
available Also, the action  layer is extremely  simplified.  The UART is simply  something that we 
can d p o s i t i o n s  to that will do the right thing, and our access to a satellite  tracker (such as the 
ASICs  on the Rogue  receivers)  simply  consists of telling it how to search  for  new  satellites. 

se/nd 

The key  behavior in this network is  the Get  Lock sensor  behavior.  This  behavior is 

Figure 4.13 - GPS DAG Network 



activated  whenever  any of the channels  report  not  having a satellite to track. When satellites are 
needed this behavior takes a look at  whether  Predicts are available.  Predicts are approximate 
positions of the satellites  gotten  from an almanac of a satellite that was  recently  tracked. If 
predicts are available the Get  Lock behavior  will  active the Directed  Search  action  node.  This  will 
tell the satellite acquisition  system  what  satellites to look for, making the acquisition  process 
fairly  quick. If predicts are not  available then an Open Sky Search (OSS) is initiated. An OSS 

searches the whole  sky for whatever  satellites  can  be found, and thus can take a  fairly  long  time. 
Once  satellites  have  been  acquired, the Track  behaviors  will take the data stream from the 

channels and compute the distance to that satellite. Once this has been  done  for  all  four  satellites, 
the Position  behavior  takes this information and calculates the GPS receivers  position.  It then 
sends this position to the UART which send the information out the data port to whoever is 
listening. 

This is an extremely  simplified  implementation of the GPS process,  but it shows a 
framework  for  how the solution  can  be  implemented  using DAG Nets. Furthermore this 
formulation is easily  extendable by  adding  more  behaviors.  For  example,  monitors  can  be  added 
to the channels to detect when they are not  working,  allowing the system to notify  ground  control 
or perhaps even  take  corrective  action. 



Chapter 5. Contributions 

This  section will  evaluate the contributions of the communications  library and the DAG 
architecture.  The  communications  library will be evaluated on its usefulness  and  functionality. 
DAG Nets  will be  evaluated  along  various  dimensions. First, it will be  compared to symbolic 
systems in general and to subsumption  architecture.  Then we will evaluate  how  well DAG 
Networks  meet the criteria set forth in chapter 3. Once this is done,  ideas for possible future work 
will be given and discussed. 

5.1 The communications library 

The  communications  library is already in use  on the next  generation Rogue software.  The 
functionality of the system has met the needs of the programmers,  except  for  applications that 
need  extremely  high-speed  communications. It has proven to be  easy to use and because the 
interface  closely  resembles that of the previous  communications, little work  was  needed to 
incorporate it into existing  software. 

5.2 DAG Networks compared to symbolic systems and subsumption 

The  first thing to note  about DAG Networks is that it is a universal  framework.  The  fact 
that behaviors in the network  are  not restricted means that anything  can  be  encoded as a  single 
behavior that is always  active.  Action  nodes  can be the simple function  calls that are the low  level 
actuator interface.  This way  of using DAG Networks  does  not  exploit  any of the power that lies 
under the surface, but in  the case that an activity  cannot  be  broken down into small,  parallel 
executing  pieces  with  simple interactions, it is a  backup. 

Figure 3.6 showed one of the simplest DAG Networks that captures the symbolic  solution. 
The  nice thing about DAG Network  is  that it is a  framework that makes it easy to take advantage 
of any breakdown  of the three basic  symbolic  systems.  For  example,  you  can  have the sensor 
behaviors  constantly update the internal world  model in  the robot.  The  planning  system  can 
simply  use the most  recently updated version. In this way the perception step becomes  more 
distributed and can  exploit  parallelism.  Systems  like DYNORAII [Shekhar, 19931 show that even 
the planning step of symbolic  systems  can  be  optimized for real-time  systems. As for the 
execution  phase, there are many  physical  actions that can  be taken at one. DAG Networks  make 
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exploiting this easy, so that even  simple  execution  phase  implementations may see a performance 
boost.  These are the ways DAG Networks  have  an  advantage  over  symbolic  systems. 

Symbolic  systems are usually  custom  made to the task  at  hand. Because of this they  can 
be  optimized  for  hardware,  software, and environment. If a DAG Network is used  for  symbolic 
systems, it must  pay the cost for having the DAG system  work in the background.  The  kind  of 
parallel  processing and activation that DAG Networks  offer  symbolic  systems  also  may  not  be 
quite right  for the task. In this case  a  symbolic  system  would  have to settle for  a  less than optimal 
solution to fit into the DAG framework. In this way DAG Networks are weaker than symbolic 
systems. 

Subsumption  architecture shares many features with DAG Networks.  Both are 
distributed systems.  In  subsumption  architecture  all  behaviors are encoded  as FSMs whereas 
DAG Networks  use rbitrary programming  languages.  This  makes  subsumption  architecture 
more appropriate for  applications  where  hardware  versions of these FSMs can  be  fabricated. 
Custom  fabbed  circuits  will  be faster than compiled  code.  The  compiled  code has the advantage 
of expresability  over FSMs. In subsumption  architecture  behaviors  are  active  unless  suppressed 
by another behavior, in DAG Networks  they  have to be  explicitly  activated  (unless they are a 
sensor behavior).  There are no  explicit goals in subsumption  architecture;  goals  emerge  from the 
various  behaviors.  Subsumption  also  have  very little state, since it wants to remain  close to  the 
hardware, the only state in pure subsumption  architecture is contained in registers.  In DAG 

Networks, arbitrary structures can  be  stored. 
Subsumption has the advantage of speed and closeness to hardware. It is  the assembly 

language  equivalent of DAG Networks. DAG Networks  on the other hand are much  more 
expressive. As was shown in  the second  example, DAG Networks  have the power to represent 
subsumption. DAG Networks are also further removed  from  hardware than subsumption. 
Subsumption  systems  can  be  built out of simple  hardware  components  while DAG N&vorks 
require  processors,  memory, and all the associated  hardware.  One  advantage to DAG Networks 
are that processors and memory are getting  cheaper and cheaper.  The  system is arranged  such 
that  it should  be  easy to build  a  multiple  processor  version.  Thus DAG Networks  may  eventually 
share the hardware  advantage that subsumption now  enjoys.  The fact that any  processor  can 
implement  any  behavior in DAG Networks is another advantage it has  over  subsumption  systems. 
Behaviors in DAG Networks are simple  code;  they  can  be  changed and interchanged  without 
hardware  changes.  Since  subsumption  deals  with  much  hardware  on  a  much  lower  level,  such 
changes are harder (unless an interpreter is being  used  at  which  point  subsumption  has  given up 
its speed and simplicity  advantages). 

\ 
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5.3 Do DAG Networks meet the criteria? 

The  main  criteria set forth  for DAG Networks  was that the task of computing a GPS 
solution  could  easily  be fitted into the framework  presented. Again, at the very least, the 
universality of the architecture means that implementing  a GPS solution will be  at least as easy 
under DAG Nets as under a  more  classical  foundation.  Moreover, the task of computing  a GPS 
solution  can  be  broken  down into smaller parts, some of which can easily  be done in  parallel. An 
example of tasks that can  be  computed in parallel is the first stages of computation on the data 
streams from  each  satellite.  These data streams do not  depend on each other until later in  the 
computation, so DAG Nets  should  easily  be  able to exploit this parallelism. 

The  system  should  also  encourage  reactivity,  robustness, and a distributed 
implementation.  The  partitioning of the task into relatively independent behaviors  satisfies  all of 
these criteria.  The  reactivity of the system stems from how sensor  behaviors  can  propagate  sensor 
input, so that action  can  be  taken  immediately  upon  sensing  some  condition.  Robustness and 
distributed-ness come  from the fact that behaviors are by their nature distributed. As long as the 
task is  broken  down into small  enough parts, the result will be distributed. If these parts are not 
dependent upon  each other, then the system  will  be  robust, as if any  one part breaks  down  all 
behaviors  not dependant upon the broken  behavior  can  keep  on  functioning  normally. 

5.3 Future Work 

The  communications  library is functional as it stands. More functionality can be  added as 
needed,  but there is no future work currently  planned.  There is much  work to be done on the 

Currently the implementation of DAG Nets is undergoing  revision and debugging.  The 
design is as presented in this thesis, but the interface is still in flux and being  debugged.  Getting a 
stable implementation of the base  system is the first priority. 

Once a stable release is ready, it will  be used  on the Rogue  receivers. Further revision and 
debugging is expected  when  developers  begin  using the system.  The  result of this phase will be 
the system that  is ready for use in the receivers.  This first system  will  be  a  fairly  simple 
implementation,  without  code to monitor the state of the system or  to take much  initiative in 
what  actions it takes. It will  follow the classic  paradigm of having  a  completely  sequential 
program  for the receiver to follow.  Later  systems will add monitor  code and more  reactive 
programming,  allowing the receiver to behave in a more  autonomous  fashion.  Further  revision of 
the system is expected at this point. 

Apart  from these revisions  certain features can be added to  the system,  depending on 
demand.  These features include  adding the learning  algorithm  mentioned  before.  The  usefulness 
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of this feature for  spacecraft is not very clear,  but if use of the system  were to branch out to 
robotics it would be an important addition.  Another  useful feature would  be a port of the system 
to a massively  parallel  architecture, as mentioned  before.  The  system  seems  well suited to such 
an implementation, and it would  be both instructive and interesting to create such a port. 

The final judge of the system will be the use it will be put to. The  system is only as 
successful as the impact it has. 



Appendix A. Communications  Library  Source 

A. 1 distream. h 

#pragma once 

#include "SharedSocket .h" 

tamplate<class T> 
class distream { 
/ /  Default State: 
/ /  Start from Begining 
/ /  Input ca l l s  are  blocking 
/ /  eof  condition w i l l  put thread to sleep 
public : 

enum { Atcurrent=-1, FromBegining=-2 1 ;  

/ /  desc:  string to match t o  writers 
/ /  90s: where to attach to the stream 
/ /  positive  int(n) - attach n from begining 
/ /  distream::AtCurrent - wherever the stream currently is 
/ /  distream::FromBegining - from first data  currently i n  the stream 
void  open(string  desc,  int poSrFromBegining, boo1 waitzfalse); 
void  close(void); 

distream &OperatOr>>(T &data); 

bool  eof  (void) ; 
bool  dataready(void); 

/ /  Manipulators 
distream& operator>>(distreamk (*f)(distream&)) { return f (* th i s ) ;  1 
distreMlb. block(void) { blocking=true;  return  *this; 1 
dietream& nonblocking(void) { blocking=false;  return  *this; 1 
d i e t r e e  eof-on(void) { sleepOnEof=false;  return *this; } 
distream& eof-off(void) { sleepOnEof=true; return  *this; 1 

int  WIndex; 
bool  blocking, sleepOnEof; 
SharedSocket<T>  *lpShSock; 
Lock lock; 

private: 

1 ;  

/ /  Manipulators 
template<T> 
distream<T>& block(distreawT>&  di) { 

1 
return  di.block(); 

template<T> 
distream<T>& nonblocking(distream<T>& d i )  I 

1 
return  di.nonblocking0; 
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tenplate<T> 
distream<T>&  eof-on(distresm<T>& d i )  { 

1 
return d i  . eof-on ( ) ; 

tsnlplate<T> 
distream<T>&  eof-off(distream<T>h d i )  { 

1 
return d i .  eof-of f ( ) ; 

#include "distream.tmp1 .h" 

A.2 distream.tmpl.h 

#include "StreamFtegietry.h" 

t-late<class T> 
distream<T>::distream(void) : 

lpShSock(O),  myIndex(-1), blocking(true), sleegOnEof (true) { 

StreamRegistry<T>::lpTheRegistry = neW(Heap::Shared()) 
if(!StreamRegistry<T>::lpTheRegistry) 

StreamRegistry<T>; 
1 

tclmplate<class T> 
distream<T>::distream(string desc,  int pos, boo1 wait) { 

distream(1; 
open(desc, pos, wait); 

1 

tarplate<class T> 
distream<T>:  :-distream(void) { 

1 
close ( ) ; 

template<class T> 
void distream<T>::apen(string desc,  int pos, boo1 wait) { 

LockBlock<Lock> LB(1ock); 
i f  (IpShSock) { 

lock.  release ( ) ; 
close ( ) ; 
lock.  acquire ( ) ; 

1 

myIndex = StreamRegistry<T>::lpTheRegistry->RegisterReader(desc, 

DebugObj : :Assert (IpShSock, "#distream: :open - coulud not register 
&lpShSock, pos, wait) ; 

stream") ; 
1 

template<class T> 
void distream<T>::close(void) { 

LockBlock<Lock> LB (lock) ; 
if(l1pShSock)  return; 

StresmRegistry~T~::IpTheRegistry-~CheckOutReader(lpShSock, myIndex); 
lpShSock = 0 ;  

1 
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teWlate<class T> 
bool  distream<T>::eof(void) { 

1 
return IlpShSock I I (IsleepOnEof && ! lpShSock->dataready(~Ind~));  

template<class T> 
distream<T> &distream<T>::operator>>(T &data) { 

index" ) ; 
DebugObj::Assert(l(nryIndex<O), H#distream::operator>> - invalid Stream 

IpShSock->Uet(data, myIndex, blocking,  SleepOflOf); 
return  *this; 

1 

template<class T> 
bool distream<T>::dataready(wid) { 

1 
return lpShSock->dataready(mIndex); 

ternlate "dent-instantiate class  distream<int>; 

A.3 d0stream.h 

lpragma once 

#include llSharedSocket. hml 

template<class T> 
class dostream { 
pub1 i c  : 

dostream(void) ; 
dostream(string  desc); 
virtual -dostream(void); 

void  open(string desc); 
void  close  (void) ; 

bool  is-open(void) ; 

dostream &operator<<(T  &data); 

private: 
SharedSocket<T>  *lpShsock; 
Lock lock; 

1;  

#include "dostream. tnpl. h" 

A.4 dostream.  tmpl. h 

#include llStreamRegistqy.hll 

tenplate<class T> 
dostream<T>: :dostream(void) : lpShSock(0) C 

if(lStreamRegistqy<T>::lpTheRegistry) 
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StreamRegistry<T>::lpTheRegistry = new(Heap::Shared()) 
StreamRegistry<T>; 
1 

template<class T >  
dostream<T>::dostream(string desc) { 

dost ream ( ) ; 
open (desc) ; 

1 

template<class T >  
dostream<T>: :-dostream(void) { 

1 
close ( ) ; 

t-late<class T> 
void dostream<T>::open(string desc) { 

LockBlock<Lock> LB (lock) ; 
i f  (IpShSock) { 

lock.release(); 
close ( ) ; 
lock.  acquire ( ) ; 

1 

StreMIRegistry<T>::lpTheRegistry->RegisterWriter(desc, &lpShSock); 
DebugObj::Assert(lpShSock, '#dostream::open - could  not register 

stream') ; 
1 

template<class T >  
void  dostream<T>::close(wid) { 

LockBlock<Lock> LB(1ock); 
i f  ( 1 1pShSock) return; 

StreamRegistry<T>::lpTheRegistry->CheckOutWriter(lpShSock); 
lpShSock = 0 ;  

1 

template<clase T> 
dostream<T> &dostreMx<T>::operator<<(T &data) { 

(*lpShSock) << data; 
return *this; 

1 

template<class T> 
boo1 dostream<T>::is-open(void) { 

1 
return ( lpShSock 1 = O )  ; 

template -dontwinstantiate class dostream<int>; 

A.5 Instantiations.cp 

Wpragma once 
#pragma export on 

#define -CO"LIB 

#include "dostreaxn.h' 

template class SharedSocket<int>; 



temlate  c lass  StreamRegistry<int>; 
temlate  c lass  dostream<int>; 
temlate  class  distream<int>; 

StreamRegistry<int> *StreM\Registry<int>:rIpTheRegistry(O); 

A.6 SharedSockeLh 

Xpragma once 

/*  #include lmSystemHeap-allocator.tmpl.hll 
#ifdef DefAllocator 
#undef DefAllocator 
#endif 
#define  DefAllocator SystemHeap-allocator 
+ /  

#include <map> 
#include <list> 
#include  mSleepList.hll 

temgdate<class T> 
class SharedSocket { 
public : 

enum { eofthro-1 I ;  

SharedSocket (void) ; 
virtual -SharedSocket(void); 

/ /  writer Functions 
void Addwriter (void) I 
bool DelWriter (void) ; 

SharedSocketB operator<<(T  &data); 

/ /  Reader Functions 
int  AddReader(int pos, bool  wait); 
bool DelReader ( int  index) ; 

void G e t ( T &  data, int  index, bool  blocking, boo1  SleepOnEof); 

bool  dataready(int  index); 

c lass  DataElem { 
private: 

public : 
/ /  These  guys inlined here  because Codewarrior craps  out on 

/ /  classes when templated 
DataElem(void) : rcount(-1) {} 
DataElem(T &data, int  nreaders) : elem(data), 

virtual -DataElem(void) { I  

nested 

rcount (nreaders) { 1 

int  rcount; 
T elem; 

}; / /  DataElem 

typedef list<DataElexW  DataBuff; / /  Add tho whole  SystamWeap-Allocator 
stuff 



typedef DataBuff::iterator DataPtr; 
typedef map<int,  DataPtr, less<int> > ClientMap; / /  SystemHeap-Allocator 
typedef  C1ientMap::iterator  ClientPtr; 

int  nwriters, next-index; 
bool got-reader; 
DataBuff  TheBuffer; 
ClientMap Theclients; 
SleepList  slwaiting; 
Lock lock; 

1 ;  

#include "SharedSocket . tmgl. h" 

A. 7 SharedSockef. tmpl. h 

#include nSleepList.h'a 
#include HThreadmanager.hmn 
#include "distream.hI' 

template<class T> 
SharedSocket<T>::SharedSocket(void) : nwriters(O),  next-index(O), 
got-reader ( fa lse)  {} 

template<class T> 
SharedSocket<T>::-SharedSocket(void) { 

/ /  Just make sure  that  eveqbody is  done running. 
LockBlock<Lock>  LB(1ock); 

1 

template<class T> 
void SharedSocket<T>::AddWriter(void) { 

LockBlock<Lock>  LB(1ock); 
nwriters++; 

1 

template<class T> 
int  SharedSocket<T>::AddReader(int pos, bool wait) { 

LockBlock<Lock>  LB(1ock); 
got-reader = true; 
while(wait && TheBuffer.size()==O) 

SleepOnList (slwaiting, lock)  ; 

switch (pos) { 
case distream<T>::AtCurrent: 

Theclients [next-index] = 
break; 

case distream<T>::FromBegining: 
Theclients [next-index] = 
break; 

Theclients [next-index] = 
fortint i = O ;  i<pos; i++) 

default : 

1 

TheBuffer.end0; 

TheBuf f er .begin ( ) ; 

TheBuf f er .begin ( ) ; 
TheClients[next-index]++; 

for(DataPtr d=TheClients[next-index];d!=TheBuffer.end();d++) 
(*d)  .rcount++; 

return next-index++; 
1;  



template<class T> 
boo1 sharedSocket<T>::DelWriter(void) { 

delete") ; 
Debu~bj::Assert(nwriters>O, "#SharedSocket::DelWriter - NO Writer t o  

LockBlock<Lock>  LB(1ock); 
return  ((--nwriters)r=O && gotreader && TheClients.eizeO==O); 

1 

template<class T> 
bool SharedSocket<T>::DelReader(int index) 

"#SharedSocket::DelReader - No Reader to  delete"); 
DebugObj::Aesert(TheClients.find(index)l=TheClients.end(), 

LockBlock<Lock> LB ( lock)  ; 
for(DataPtr i = TheClients[indexl;  il=TheBuffer.endO; i++) 

TheClients.erase(index); 
return (nwriters==O && TheClients.sizeO==O); 

if((--((*i) .rcount))==O) TheBuffer.orase(i); 

1 

t m l a t e < c l a s s  T> 
SharedSocket<T>& SharedSocket<T>::operator<<(T &data) { 

LockBlock<Lock>  LB(1ock); 
TheBuffer.push-back(DataElem(data, TheClients.size0)); 
for(C1ientPtr inTheClients.begin()~il~TheClients.end();i++) 

if((*i).second==TheBuffer.end()) { 
(*i) .second = TheBuffer.end0; 
(*i).second--; 

1 

slWaiting.Wake0; 
return  *this; 

template<class T> 
void SharedSocket<T>::Get(T &data, int  index, bool blocking, boo1 sleepOnEof) { 

LockBlock<Lock>  LB(1ock); 
if(TheClients[indexlr=TheBuffer.end()) { / /  Read  when there i s  no more 

data 

(eof-on) throw eof 

(nonblocking) throw eof 

/ /  If  no more writers then i f  sleepOnEof g o  t o  sleep. E l s e  

/ /  If more writers then i f  blocking go to sleep. E l s e  

i f  ( (blocking && nwriters I = O )  I I (nwriters==O && SleepOnEof) { 
SleepOnList(slWaiting, lock); / /  What i f  writers are done, 

reader sleeps 

a l l  writers close? W i l l  never wake... 
1 / /  and then 

else throw eofthrow; 
1 

DataPtr d = TheClients[index]++; 
data = (*d) . elem; 
if((--(*d).rcount)=-O)  TheBuffer.erase(d); 

1 

tenplate<class T> 
bool SharedSocket<T>::dataready(int index) { 

1 
return (TheClients[index]l=TheBuffer.end()); 

template -dent-instantiate class SharedSocket<int>; 
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A.8 StreamRegistry.h 

# p r a m  once 

/*  #include nSystemtIeap-allocator.tmpl.h~~ 
#ifdef DefAllocator 
#undef DefAllocator 
Wendif 
#define  DefAllocator SystemHeap-allocator 
*/ 

#include <map> 
#include  <bstring.h> 
#include "SharedSocket .hn 

template<class T> 
class Stre-egistry { 
public : 

StreamRegistry(void) ; 
virtual -StreamRegistry(void); 

s tat ic  StreamRegistry<T>* IgTheRegistry; 

typedef  mapestring, SharedSocket<T>*, less<string> > SockMap; 
typedef  S0ckMap::iterator SockPtr; 
typedef SockMap::value-type  SockVal; 

class IsEqual { 
public : 

private: 

IsEqual(SharedSocket<T> * s )  : lpShSock(s) { I ;  
boo1 operator() (SockVal v)  { return  v.second==lpShSock; } 

SharedSocket<T>  *lpShSock; 
private: 

1 ;  

SockMap  TheMap; 
Lock lock; 

1; 

#include "StreamRegistry.  tmpl. h" 

A.9 StreamRegistry.tmpl.h 

lifndef -COMMLIB 

template<class T> 
extern StreamRegistry<T> *StreamRegistry<T>::lpTheRegistry; 

#endif / /  -COIUWLIB 
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tenlplate<class T> 
StreamRegistry<T>::StreamRegistry(void) : TheMapO { I  

tenlplate<class T> 
StreamRegistry<T>:  :-StreamRegistry(void) { 

/ /  just make sure  that everybody i s  &ne running 
LockBlock<Lock> LP(1ock); 

1 

t-late<class T> 
void StreamRegistry<T>::RegisterWriter(string desc, SharedSocket<T> 
**lplpSharedSock) { 

lock.  acquire ( ) ; 
i f  (TheMap.find(desc)P=Th~p.endO) 

lock.release(); 
(*lplpSharedSock) = Thaap  [descl ; 
(*lplpSharedSock)->Addwriter(); 

TheMap[desc] = new(Heap: :Shared0 ) SharedSocketXT,; 

? 

template<class T> 
i n t  StreamRegistry<T>::RegisterReader(string doact SharedSocket<T> 
**lplpSharedSock, i n t  post boo1 wait) { 

lock.  acquire ( ) ; 
i f  (TheWap.find(desc)IrTheMap.end()) 

lock.  release ( ) ; 
( *lplpSharedSock) = TheMap [descl ; 
return (*lplpSharedSock)->AddReader(pos, wait); 

ThaMap [desc] = new(Heap: :Shared( 1 ) SharedSocket<T>; 

1 

template<class T> 
void StreamRegistry<T>::CheckOutWriter(SharedSocket<T> *lpSharedSock) C 

boo1 DeleteFromMap = lpSharedSock->DelWriter(); 

LockBlock<Lock> LB(1ock); 
SockPtr s = fid-if(TheMap.begin(), ThoMap.end(), IsEqual(lp8haredSock)); 
i f  ( s  1 =TheMap. end ( ) P P  DeleteFrcmMap) { 

delete (*s).second; 
TheMap. erase ( 8 )  ; 

i f  (TheMap.eizeO==O) { 
delete IpTheRegistry; 
IpTheRegistryrO; 

1 
1 

1 

t-late<class T> 
void StreamRegistry<T>::CheckOutReader(SharedSocket<T> *IpSharedSock, i n t  
index) { 

bo01 DeleteFromMap = lpSharedSock->DelReader(index); 

LockBlock<Lock> LB(1ock); 
SockPtr s = find-if(TheMap.begin(), TheMap.ond0, IsEQual(1pShardSock)); 
i f  ( s  l=TheMap.end() OP DeleteFromMap) { 

delete  (*s).second; 
TheMap. erase ( e )  I 

if(TheMap.sizeO==O) { 
delete IpTheRegietry; 
lpTheRegistry=O; 
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template -dent-instantiate class StreamRegistry<int>; 



Appendix B. Communications Demo 

This is the source code for the demonstration of how to use the communications  library. 

B. 1 SCDemoRxMain.cp 

#include "ThreadStarter. h" 
#include "SC Demo Rx thread.hn 

void main( { 
NewRxThread Ne-; 
Threadstarter  *rxStart = new ThreadStarter(PNewRx, fa lse) ;  

rxStart->Target("Receiver"); 
(*mStart) ( ) ; 
delete  rxstart; 

8.2 SCDemoRxThread.cp 

#include  <iostream.h> 
#include "SC Demo R x  thread.h" 
#include  81distream.h1a 

RxThread::RxThread (const  sysstring &Name, Environmsnt &E) : -FPThread 
<Processor> (E) ( 1  

for(int n=O; ndO; n++) { 
while ( 1 Instream. eof ( ) ) { 

Instream >> i; 
cout < <  < <  i < <  << endl; 

1 
cout < <  "EOF ! < <  endl ; 
Delay ( ) ; 

? 
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Thread* NewaxThread::operator() (const  eysstring &Name, Environment *E) { 

1 
return new (E->LocalHeap()) &Thread (Name, *E);  

6.3 SCDemoRxTxMain.cp 

#include "ThreadStarter.h" 

#include "SC D e m o  Tx thr9ad.h" 
#include "SC Demo Rx thread.h" 

void main( ) { 
NewTxThread  NewTx; 
NewRxThread Ne-; 

Threadstarter *txStart = new ThreadStarter(&NswTx, false);  
Threadstarter *rxStart = new ThreadStarter(&NeodRx, falee);  

txStart->Target("Transmitter"); 
rxStart->Target('Receiver"); 

NewTx.start=O; 
(*mStart) ( ) ; 
( *txStart ) ( ) ; 

NewTx.start=lO; 
( *txStart ) ( ) ; 
(*rxStart ) ( ) ; 

delete  txltart; 
delete  rxStart; 

1 

B.4 SCDemoTxMain.cp 

#include 'ThreadStarter.h" 
#include "SC D e m o  Tx thread.h" 

void main( ) { 
NewTxThread  NewTx; 
Threadstarter  *txStart = new  ThreadStarter(&NeuwTx, fa lse) ;  

txstart->Target  ("Transmitter") ; 
NewTx.start=O; 
(*txStart) ( )  ; 
delete  txstart; 

1 

B.5 SCDemoTxThread.cp 



#include  <iostream.h> 
#include " S C  Demo Tx thread.hn 
#include lldostream.hll 

void TxThread:  :Run (void) { 

try { 
dostream<int> Outstream; 
OutStream.open ( l lIntsH);  

for  ( int i = start; i < (start+lO); i++) 
Outstream << i; 

Outstream. close ( )  ; 

cout < <  "Done TransmittingA << endl; 
1 
catch(exception e )  { 

1 
catch(. . . ) { 

1 

cout < <  e.what() << endl; 

cout < <  llException i n  TxThread: :Run() < <  endl; 

1 

B.6 SCDemoRxThread.h 

#include "Threadstarter.  hV1 
#include '"I?lreadImpl  .hI1 

class -Thread : public -FPThread<Processor> { 
public : 

RxThread (const sysstringbr, Environment&)$ 
void  Init  (void) { }; 
void Run (void); 

1 ;  

class NewRxThread : public -Threa&Maker { 
pub1 i c  : 

Thread* operator()  (const  sysstringti Name, Environrasnt* E ) ;  
1;  

B. 7 SCDem0RxThread.h 

#include "ThreadStarter . hl' 
#include "ThreadImpl .h" 

class TxThread : public -FPThread<Processor> { 
public : 

TxThread (const  sysstring &Name, Environment &E, int  n) : 

void  Init ( 1  { I ;  
void R u n  (void); 
int  start; 

s tart (n) ,  -FPThread<Processor>(E) { I ;  
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class NewTxThread : public -ThreadMaker { 
public : 

Thread * operator()(const  sysstring &Name, Environment *E) ;  
int  start; 

I ;  
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Appendix C. Commlib Differences 

This is the file that was distributed with the new  commlib  explaining the difference  from 
the previous  release. 

Differences from the  old streams: 
1) **Arguments to distream::open and distream::distream have  changed** 
2 )  **Manipulators  have  been added t o  configure the state of a  distream** 

3 )  Streams support multiple writers 
4 )  Y o u  do not need to descend your threads from either pktsource or pktsink 
5 )  Y o u  do not need t o  descend the  data you  want to  pass from pktBase 
6 )  There i s  no need to manually instantiate ANYTHING 

1) The  arguments to distream::open and distream::distream have  changed,  but 
have defaults such that Codewarrior w i l l  happily g o  ahead  and let you comi le  
your old code. Doing so w i l l  probably result  in many c a l l s  to m e  asking w h a t  
the  hell  is  happening. The  new arguxmnts are: 

distream::open(string  desc,  int posrFromEkgining, bool wait5false); 
distream::distream(string desc,  int pos=FramBegining, bool waitafalse); 
desc - th is  is the  string that prwides  the  connection between distreams 

gos - th is  determines where the di8tream w i l l  join up with  the 
and dostreams. Meaning is the saxno as  in  the  previous  library 

dostreams. 
FromBegining w i l l  position  the stream at  the beginning of  the 

AtCurrent w i l l  position  the stream at  the end of  the  data  buffer, 
available  data. 

so that the first data it  reads w i l l  be  the first data 
written to the stream after  the  reader's  creation. 
specifying a Positive  Integer  (n) w i l l  position  the stream 
n  elements from the beginning of the  available  data. 

This defaults  to FromBegining. 

*Note* - the streams only keep  around data  that some reader has 
not  yet  read.  If  every  registered reader has read past some data, that data is 
released from the  buffer. 

wait - th is  boolean controls how the stream behaves i f  there is  no data 
available when the stream is opened. If  wait i s  true,  the stream w i l l  put 
the thread to sleep and w i l l  wake  up  when the f i r s t  data gets written.  If wait 
i s  false,  the stream w i l l  register itself and return. This defaults  to  false.  

2 )  The following manipulators have  been defined for distreams:  block, 
nonblocking,  eof-on,  eof-on. They affect  the way the stream behaves when it  
attempts  a read when there i s  no data available. 

stream < <  block << eof-on - In this  configuration, i f  a  distream  reads 
when there i s  no more data available, one of two things happens. If there  are 
st i l l  writers registered,  the stream w i l l  put the thread to sleep  until more 
data is  available.  If no more readers  are  available,  then  the c a l l  w i l l  throw 
an exception. 

stream < <  block << eof-off - This  configuration is similar to the above 
except when there  are no more writers. In this  case  the stream w i l l  put the 
thread to sleep and w i l l  wake  up  when there is  more data  (rather than throwing 
an exception). 
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. 
stream << nonblocking << eof-on - In this  configuration,  the stream w i l l  

never put the thread to  sleep.  If  you read beyond the  eof at  any time, an 
exception w i l l  be thrown. 

stream << nonblocking << eof-off - In this  configuration,  the stream w i l l  
only put the  thread t o  sleep when it tries a read when there  are no writers and 
there is  no data available. If you try  to  read past  the eof, the c a l l  w i l l  
throw  an exception.  Since eof has  been  turned off ( i . e .  c a l l s   t o   e o f 0  w i l l  
always return fa lse) ,   th is  modo only makes sense when  you are  sure that the 
reader w i l l  never read faster than writer w i l l  write. 

3 )  There is  no special syntax for attaching  multiple writers, simply declare 
each w r i t e r  l ike  you normally  would. The writes are done asynchronously, so 
the  data from different threads may be interleaved. 

A s  a  matter of fact, I ' m  not  even  going to  prwide  the pktsource and pktsink 
base c lass .   I f  you don't want to release your threads from this  yoke, include 
the files from the  previous streaming library. 

5 )  See 4 .  Replace pktsink and pktsource with pktBase. 

6 )  Jbst declare streams around any class  that has  a copy constructor. 
Codewarrior  can figure out the  correct  instantiations to make. 

** N o t e  that  these s t rew cannot coumrunicate across memory contexts. Support 
for  this i s  the  next  thing to be added. 
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